Goto

Collaborating Authors

 Mazumdar, Arya


Clustering with Noisy Queries

Neural Information Processing Systems

In this paper, we provide a rigorous theoretical study of clustering with noisy queries. Given a set of $n$ elements, our goal is to recover the true clustering by asking minimum number of pairwise queries to an oracle. Oracle can answer queries of the form ``do elements $u$ and $v$ belong to the same cluster?''-the queries can be asked interactively (adaptive queries), or non-adaptively up-front, but its answer can be erroneous with probability $p$. In this paper, we provide the first information theoretic lower bound on the number of queries for clustering with noisy oracle in both situations. We design novel algorithms that closely match this query complexity lower bound, even when the number of clusters is unknown. Moreover, we design computationally efficient algorithms both for the adaptive and non-adaptive settings. The problem captures/generalizes multiple application scenarios. It is directly motivated by the growing body of work that use crowdsourcing for {\em entity resolution}, a fundamental and challenging data mining task aimed to identify all records in a database referring to the same entity. Here crowd represents the noisy oracle, and the number of queries directly relates to the cost of crowdsourcing. Another application comes from the problem of sign edge prediction in social network, where social interactions can be both positive and negative, and one must identify the sign of all pair-wise interactions by querying a few pairs. Furthermore, clustering with noisy oracle is intimately connected to correlation clustering, leading to improvement therein. Finally, it introduces a new direction of study in the popular stochastic block model where one has an incomplete stochastic block model matrix to recover the clusters.


Query Complexity of Clustering with Side Information

Neural Information Processing Systems

Suppose, we are given a set of $n$ elements to be clustered into $k$ (unknown) clusters, and an oracle/expert labeler that can interactively answer pair-wise queries of the form, ``do two elements $u$ and $v$ belong to the same cluster?''. The goal is to recover the optimum clustering by asking the minimum number of queries. In this paper, we provide a rigorous theoretical study of this basic problem of query complexity of interactive clustering, and give strong information theoretic lower bounds, as well as nearly matching upper bounds. Most clustering problems come with a similarity matrix, which is used by an automated process to cluster similar points together. To improve accuracy of clustering, a fruitful approach in recent years has been to ask a domain expert or crowd to obtain labeled data interactively. Many heuristics have been proposed, and all of these use a similarity function to come up with a querying strategy. Even so, there is a lack systematic theoretical study. Our main contribution in this paper is to show the dramatic power of side information aka similarity matrix on reducing the query complexity of clustering. A similarity matrix represents noisy pair-wise relationships such as one computed by some function on attributes of the elements. A natural noisy model is where similarity values are drawn independently from some arbitrary probability distribution $f_+$ when the underlying pair of elements belong to the same cluster, and from some $f_-$ otherwise. We show that given such a similarity matrix, the query complexity reduces drastically from $\Theta(nk)$ (no similarity matrix) to $O(\frac{k^2\log{n}}{\cH^2(f_+\|f_-)})$ where $\cH^2$ denotes the squared Hellinger divergence. Moreover, this is also information-theoretic optimal within an $O(\log{n})$ factor. Our algorithms are all efficient, and parameter free, i.e., they work without any knowledge of $k, f_+$ and $f_-$, and only depend logarithmically with $n$.


Query Complexity of Clustering with Side Information

arXiv.org Machine Learning

Suppose, we are given a set of $n$ elements to be clustered into $k$ (unknown) clusters, and an oracle/expert labeler that can interactively answer pair-wise queries of the form, "do two elements $u$ and $v$ belong to the same cluster?". The goal is to recover the optimum clustering by asking the minimum number of queries. In this paper, we initiate a rigorous theoretical study of this basic problem of query complexity of interactive clustering, and provide strong information theoretic lower bounds, as well as nearly matching upper bounds. Most clustering problems come with a similarity matrix, which is used by an automated process to cluster similar points together. Our main contribution in this paper is to show the dramatic power of side information aka similarity matrix on reducing the query complexity of clustering. A similarity matrix represents noisy pair-wise relationships such as one computed by some function on attributes of the elements. A natural noisy model is where similarity values are drawn independently from some arbitrary probability distribution $f_+$ when the underlying pair of elements belong to the same cluster, and from some $f_-$ otherwise. We show that given such a similarity matrix, the query complexity reduces drastically from $\Theta(nk)$ (no similarity matrix) to $O(\frac{k^2\log{n}}{\cH^2(f_+\|f_-)})$ where $\cH^2$ denotes the squared Hellinger divergence. Moreover, this is also information-theoretic optimal within an $O(\log{n})$ factor. Our algorithms are all efficient, and parameter free, i.e., they work without any knowledge of $k, f_+$ and $f_-$, and only depend logarithmically with $n$. Along the way, our work also reveals intriguing connection to popular community detection models such as the {\em stochastic block model}, significantly generalizes them, and opens up many venues for interesting future research.


Clustering with Noisy Queries

arXiv.org Machine Learning

In this paper, we initiate a rigorous theoretical study of clustering with noisy queries (or a faulty oracle). Given a set of $n$ elements, our goal is to recover the true clustering by asking minimum number of pairwise queries to an oracle. Oracle can answer queries of the form : "do elements $u$ and $v$ belong to the same cluster?" -- the queries can be asked interactively (adaptive queries), or non-adaptively up-front, but its answer can be erroneous with probability $p$. In this paper, we provide the first information theoretic lower bound on the number of queries for clustering with noisy oracle in both situations. We design novel algorithms that closely match this query complexity lower bound, even when the number of clusters is unknown. Moreover, we design computationally efficient algorithms both for the adaptive and non-adaptive settings. The problem captures/generalizes multiple application scenarios. It is directly motivated by the growing body of work that use crowdsourcing for {\em entity resolution}, a fundamental and challenging data mining task aimed to identify all records in a database referring to the same entity. Here crowd represents the noisy oracle, and the number of queries directly relates to the cost of crowdsourcing. Another application comes from the problem of {\em sign edge prediction} in social network, where social interactions can be both positive and negative, and one must identify the sign of all pair-wise interactions by querying a few pairs. Furthermore, clustering with noisy oracle is intimately connected to correlation clustering, leading to improvement therein. Finally, it introduces a new direction of study in the popular {\em stochastic block model} where one has an incomplete stochastic block model matrix to recover the clusters.


Associative Memory Using Dictionary Learning and Expander Decoding

AAAI Conferences

An associative memory is a framework of content-addressable memory that stores a collection of message vectors (or a dataset) over a neural network while enabling a neurally feasible mechanism to recover any message in the dataset from its noisy version. Designing an associative memory requires addressing two main tasks: 1) learning phase: given a dataset, learn a concise representation of the dataset in the form of a graphical model (or a neural network), 2) recall phase: given a noisy version of a message vector from the dataset, output the correct message vector via a neurally feasible algorithm over the network learnt during the learning phase. This paper studies the problem of designing a class of neural associative memories which learns a network representation for a large dataset that ensures correction against a large number of adversarial errors during the recall phase. Specifically, the associative memories designed in this paper can store dataset containing exp( n ) n -length message vectors over a network with O ( n ) nodes and can tolerate ฮฉ( n / polylog) adversarial errors. This paper carries out this memory design by mapping the learning phase and recall phase to the tasks of dictionary learning with a square dictionary and iterative error correction in an expander code, respectively.


A Theoretical Analysis of First Heuristics of Crowdsourced Entity Resolution

AAAI Conferences

Entity resolution (ER) is the task of identifying all records in a database that refer to the same underlying entity, and are therefore duplicates of each other. Due to inherent ambiguity of data representation and poor data quality, ER is a challenging task for any automated process. As a remedy, human-powered ER via crowdsourcing has become popular in recent years. Using crowd to answer queries is costly and time consuming. Furthermore, crowd-answers can often be faulty. Therefore, crowd-based ER methods aim to minimize human participation without sacrificing the quality and use a computer generated similarity matrix actively. While, some of these methods perform well in practice, no theoretical analysis exists for them, and further their worst case performances do not reflect the experimental findings. This creates a disparity in the understanding of the popular heuristics for this problem. In this paper, we make the first attempt to close this gap. We provide a thorough analysis of the prominent heuristic algorithms for crowd-based ER. We justify experimental observations with our analysis and information theoretic lower bounds.


Associative Memory using Dictionary Learning and Expander Decoding

arXiv.org Machine Learning

An associative memory is a framework of content-addressable memory that stores a collection of message vectors (or a dataset) over a neural network while enabling a neurally feasible mechanism to recover any message in the dataset from its noisy version. Designing an associative memory requires addressing two main tasks: 1) learning phase: given a dataset, learn a concise representation of the dataset in the form of a graphical model (or a neural network), 2) recall phase: given a noisy version of a message vector from the dataset, output the correct message vector via a neurally feasible algorithm over the network learnt during the learning phase. This paper studies the problem of designing a class of neural associative memories which learns a network representation for a large dataset that ensures correction against a large number of adversarial errors during the recall phase. Specifically, the associative memories designed in this paper can store dataset containing $\exp(n)$ $n$-length message vectors over a network with $O(n)$ nodes and can tolerate $\Omega(\frac{n}{{\rm polylog} n})$ adversarial errors. This paper carries out this memory design by mapping the learning phase and recall phase to the tasks of dictionary learning with a square dictionary and iterative error correction in an expander code, respectively.


Associative Memory via a Sparse Recovery Model

Neural Information Processing Systems

An associative memory is a structure learned from a dataset $\mathcal{M}$ of vectors (signals) in a way such that, given a noisy version of one of the vectors as input, the nearest valid vector from $\mathcal{M}$ (nearest neighbor) is provided as output, preferably via a fast iterative algorithm. Traditionally, binary (or $q$-ary) Hopfield neural networks are used to model the above structure. In this paper, for the first time, we propose a model of associative memory based on sparse recovery of signals. Our basic premise is simple. For a dataset, we learn a set of linear constraints that every vector in the dataset must satisfy. Provided these linear constraints possess some special properties, it is possible to cast the task of finding nearest neighbor as a sparse recovery problem. Assuming generic random models for the dataset, we show that it is possible to store super-polynomial or exponential number of $n$-length vectors in a neural network of size $O(n)$. Furthermore, given a noisy version of one of the stored vectors corrupted in near-linear number of coordinates, the vector can be correctly recalled using a neurally feasible algorithm.