Not enough data to create a plot.
Try a different view from the menu above.
Mayer, Ruben
A Survey on Dataset Distillation: Approaches, Applications and Future Directions
Geng, Jiahui, Chen, Zongxiong, Wang, Yuandou, Woisetschlaeger, Herbert, Schimmler, Sonja, Mayer, Ruben, Zhao, Zhiming, Rong, Chunming
Dataset distillation is attracting more attention in machine learning as training sets continue to grow and the cost of training state-of-the-art models becomes increasingly high. By synthesizing datasets with high information density, dataset distillation offers a range of potential applications, including support for continual learning, neural architecture search, and privacy protection. Despite recent advances, we lack a holistic understanding of the approaches and applications. Our survey aims to bridge this gap by first proposing a taxonomy of dataset distillation, characterizing existing approaches, and then systematically reviewing the data modalities, and related applications. In addition, we summarize the challenges and discuss future directions for this field of research.
FLEdge: Benchmarking Federated Machine Learning Applications in Edge Computing Systems
Woisetschläger, Herbert, Isenko, Alexander, Mayer, Ruben, Jacobsen, Hans-Arno
Federated Machine Learning (FL) has received considerable attention in recent years. FL benchmarks are predominantly explored in either simulated systems or data center environments, neglecting the setups of real-world systems, which are often closely linked to edge computing. We close this research gap by introducing FLEdge, a benchmark targeting FL workloads in edge computing systems. We systematically study hardware heterogeneity, energy efficiency during training, and the effect of various differential privacy levels on training in FL systems. To make this benchmark applicable to real-world scenarios, we evaluate the impact of client dropouts on state-of-the-art FL strategies with failure rates as high as 50%. FLEdge provides new insights, such as that training state-of-the-art FL workloads on older GPU-accelerated embedded devices is up to 3x more energy efficient than on modern server-grade GPUs.
A Comprehensive Study on Dataset Distillation: Performance, Privacy, Robustness and Fairness
Chen, Zongxiong, Geng, Jiahui, Zhu, Derui, Woisetschlaeger, Herbert, Li, Qing, Schimmler, Sonja, Mayer, Ruben, Rong, Chunming
The aim of dataset distillation is to encode the rich features of an original dataset into a tiny dataset. It is a promising approach to accelerate neural network training and related studies. Different approaches have been proposed to improve the informativeness and generalization performance of distilled images. However, no work has comprehensively analyzed this technique from a security perspective and there is a lack of systematic understanding of potential risks. In this work, we conduct extensive experiments to evaluate current state-of-the-art dataset distillation methods. We successfully use membership inference attacks to show that privacy risks still remain. Our work also demonstrates that dataset distillation can cause varying degrees of impact on model robustness and amplify model unfairness across classes when making predictions. This work offers a large-scale benchmarking framework for dataset distillation evaluation.
The Evolution of Distributed Systems for Graph Neural Networks and their Origin in Graph Processing and Deep Learning: A Survey
Vatter, Jana, Mayer, Ruben, Jacobsen, Hans-Arno
Graph Neural Networks (GNNs) are an emerging research field. This specialized Deep Neural Network (DNN) architecture is capable of processing graph structured data and bridges the gap between graph processing and Deep Learning (DL). As graphs are everywhere, GNNs can be applied to various domains including recommendation systems, computer vision, natural language processing, biology and chemistry. With the rapid growing size of real world graphs, the need for efficient and scalable GNN training solutions has come. Consequently, many works proposing GNN systems have emerged throughout the past few years. However, there is an acute lack of overview, categorization and comparison of such systems. We aim to fill this gap by summarizing and categorizing important methods and techniques for large-scale GNN solutions. In addition, we establish connections between GNN systems, graph processing systems and DL systems.
Scalable Deep Learning on Distributed Infrastructures: Challenges, Techniques and Tools
Mayer, Ruben, Jacobsen, Hans-Arno
Deep Learning (DL) has had an immense success in the recent past, leading to state-of-the-art results in various domains such as image recognition and natural language processing. One of the reasons for this success is the increasing size of DL models and the proliferation of vast amounts of training data being available. To keep on improving the performance of DL, increasing the scalability of DL systems is necessary. In this survey, we perform a broad and thorough investigation on challenges, techniques and tools for scalable DL on distributed infrastructures. This incorporates infrastructures for DL, methods for parallel DL training, multi-tenant resource scheduling and the management of training and model data. Further, we analyze and compare 11 current open-source DL frameworks and tools and investigate which of the techniques are commonly implemented in practice. Finally, we highlight future research trends in DL systems that deserve further research.