Goto

Collaborating Authors

 Matwin, Stan


Continuous Control with Deep Reinforcement Learning for Autonomous Vessels

arXiv.org Artificial Intelligence

Maritime autonomous transportation has played a crucial role in the globalization of the world economy. Deep Reinforcement Learning (DRL) has been applied to automatic path planning to simulate vessel collision avoidance situations in open seas. End-to-end approaches that learn complex mappings directly from the input have poor generalization to reach the targets in different environments. In this work, we present a new strategy called state-action rotation to improve agent's performance in unseen situations by rotating the obtained experience (state-action-state) and preserving them in the replay buffer. We designed our model based on Deep Deterministic Policy Gradient, local view maker, and planner. Our agent uses two deep Convolutional Neural Networks to estimate the policy and action-value functions. The proposed model was exhaustively trained and tested in maritime scenarios with real maps from cities such as Montreal and Halifax. Experimental results show that the state-action rotation on top of the CVN consistently improves the rate of arrival to a destination (RATD) by up 11.96% with respect to the Vessel Navigator with Planner and Local View (VNPLV), as well as it achieves superior performance in unseen mappings by up 30.82%. Our proposed approach exhibits advantages in terms of robustness when tested in a new environment, supporting the idea that generalization can be achieved by using state-action rotation.


Artificial Intelligence for Emotion-Semantic Trending and People Emotion Detection During COVID-19 Social Isolation

arXiv.org Artificial Intelligence

This more than a yearlong outbreak is likely to have a significant impact on mental health of many individuals who lost loved ones, who lost personal contacts with others due to strictly enforced public health guidelines of mandatory social segregation. Complex psychological reactions to COVID-19 regulatory mechanisms of mandatory quarantine and related emotional reactions has been recognized as hard to disentangle [1] - [4]. A study conducted in Belgium found social media being positively associated with constructive coping for adolescents with anxious feelings during the quarantine period of COVID-19 [4]. Another study conducted among social media users during COVID-19 pandemic in Spain was able to capture added stress placed on people's emotional health during the pandemic period [5]. However, social media providing a platform of risk communication and exchange of feelings and emotions to curb social isolation, this text data provides a wealth of information on the natural flow of people's emotional feelings and expressions [6]. This rich source of data can be utilized to curb the data collection barriers during the pandemic. The goal of this research was to use AI to uncover the hidden, implicit signal related to emotional health of people subject to mandatory quarantine, embedded in a latent manner in their twitter messages. Within the context of this paper, an NLPbased emotion detection system aims to provide useful information by examining unstructured text data used in social media. The purpose of the NLP system used herein is to show the meaning and emotions of users' expressions related to a particular topic, which can be used to understand their psychological health and emotional wellbeing.


Pay Attention to Evolution: Time Series Forecasting with Deep Graph-Evolution Learning

arXiv.org Artificial Intelligence

Time-series forecasting is one of the most active research topics in predictive analysis. A still open gap in that literature is that statistical and ensemble learning approaches systematically present lower predictive performance than deep learning methods as they generally disregard the data sequence aspect entangled with multivariate data represented in more than one time series. Conversely, this work presents a novel neural network architecture for time-series forecasting that combines the power of graph evolution with deep recurrent learning on distinct data distributions; we named our method Recurrent Graph Evolution Neural Network (ReGENN). The idea is to infer multiple multivariate relationships between co-occurring time-series by assuming that the temporal data depends not only on inner variables and intra-temporal relationships (i.e., observations from itself) but also on outer variables and inter-temporal relationships (i.e., observations from other-selves). An extensive set of experiments was conducted comparing ReGENN with dozens of ensemble methods and classical statistical ones, showing sound improvement of up to 64.87% over the competing algorithms. Furthermore, we present an analysis of the intermediate weights arising from ReGENN, showing that by looking at inter and intra-temporal relationships simultaneously, time-series forecasting is majorly improved if paying attention to how multiple multivariate data synchronously evolve.


Learn Faster and Forget Slower via Fast and Stable Task Adaptation

arXiv.org Machine Learning

Training Deep Neural Networks (DNNs) is still highly time-consuming and compute-intensive. It has been shown that adapting a pretrained model may significantly accelerate this process. With a focus on classification, we show that current fine-tuning techniques make the pretrained models catastrophically forget the transferred knowledge even before anything about the new task is learned. Such rapid knowledge loss undermines the merits of transfer learning and may result in a much slower convergence rate compared to when the maximum amount of knowledge is exploited. We investigate the source of this problem from different perspectives and to alleviate it, introduce Fast And Stable Task-adaptation (FAST), an easy to apply fine-tuning algorithm. The paper provides a novel geometric perspective on how the loss landscape of source and target tasks are linked in different transfer learning strategies. We empirically show that compared to prevailing fine-tuning practices, FAST learns the target task faster and forgets the source task slower. The code is available at https://github.com/fvarno/FAST.


Analyzing the Impact of Foursquare and Streetlight Data with Human Demographics on Future Crime Prediction

arXiv.org Machine Learning

Finding the factors contributing to criminal activities and their consequences is essential to improve quantitative crime research. To respond to this concern, we examine an extensive set of features from different perspectives and explanations. Our study aims to build data-driven models for predicting future crime occurrences. In this paper, we propose the use of streetlight infrastructure and Foursquare data along with demographic characteristics for improving future crime incident prediction. We evaluate the classification performance based on various feature combinations as well as with the baseline model. Our proposed model was tested on each smallest geographic region in Halifax, Canada. Our findings demonstrate the effectiveness of integrating diverse sources of data to gain satisfactory classification performance.


Implicit Class-Conditioned Domain Alignment for Unsupervised Domain Adaptation

arXiv.org Machine Learning

We present an approach for unsupervised domain adaptation---with a strong focus on practical considerations of within-domain class imbalance and between-domain class distribution shift---from a class-conditioned domain alignment perspective. Current methods for class-conditioned domain alignment aim to explicitly minimize a loss function based on pseudo-label estimations of the target domain. However, these methods suffer from pseudo-label bias in the form of error accumulation. We propose a method that removes the need for explicit optimization of model parameters from pseudo-labels directly. Instead, we present a sampling-based implicit alignment approach, where the sample selection procedure is implicitly guided by the pseudo-labels. Theoretical analysis reveals the existence of a domain-discriminator shortcut in misaligned classes, which is addressed by the proposed implicit alignment approach to facilitate domain-adversarial learning. Empirical results and ablation studies confirm the effectiveness of the proposed approach, especially in the presence of within-domain class imbalance and between-domain class distribution shift.


Challenges in Vessel Behavior and Anomaly Detection: From Classical Machine Learning to Deep Learning

arXiv.org Machine Learning

The global expansion of maritime activities and the development of the Automatic Identification System (AIS) have driven the advances in maritime monitoring systems in the last decade. Monitoring vessel behavior is fundamental to safeguard maritime operations, protecting other vessels sailing the ocean and the marine fauna and flora. Given the enormous volume of vessel data continually being generated, real-time analysis of vessel behaviors is only possible because of decision support systems provided with event and anomaly detection methods. However, current works on vessel event detection are ad-hoc methods able to handle only a single or a few predefined types of vessel behavior. Most of the existing approaches do not learn from the data and require the definition of queries and rules for describing each behavior. In this paper, we discuss challenges and opportunities in classical machine learning and deep learning for vessel event and anomaly detection. We hope to motivate the research of novel methods and tools, since addressing these challenges is an essential step towards actual intelligent maritime monitoring systems.


Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D Environments

arXiv.org Artificial Intelligence

Unmanned Surface Vehicles technology (USVs) is an exciting topic that essentially deploys an algorithm to safely and efficiently performs a mission. Although reinforcement learning is a well-known approach to modeling such a task, instability and divergence may occur when combining off-policy and function approximation. In this work, we used deep reinforcement learning combining Q-learning with a neural representation to avoid instability. Our methodology uses deep q-learning and combines it with a rolling wave planning approach on agile methodology. Our method contains two critical parts in order to perform missions in an unknown environment. The first is a path planner that is responsible for generating a potential effective path to a destination without considering the details of the root. The latter is a decision-making module that is responsible for short-term decisions on avoiding obstacles during the near future steps of USV exploitation within the context of the value function. Simulations were performed using two algorithms: a basic vanilla vessel navigator (VVN) as a baseline and an improved one for the vessel navigator with a planner and local view (VNPLV). Experimental results show that the proposed method enhanced the performance of VVN by 55.31 on average for long-distance missions. Our model successfully demonstrated obstacle avoidance by means of deep reinforcement learning using planning adaptive paths in unknown environments.


Multimodal Deep Learning for Mental Disorders Prediction from Audio Speech Samples

arXiv.org Machine Learning

Key features of mental illnesses are reflected in speech. Our research focuses on designing a multimodal deep learning structure that automatically extracts salient features from recorded speech samples for predicting various mental disorders including depression, bipolar, and schizophrenia. We adopt a variety of pre-trained models to extract embeddings from both audio and text segments. We use several state-of-the-art embedding techniques including BERT, FastText, and Doc2VecC for the text representation learning and WaveNet and VGG-ish models for audio encoding. We also leverage huge auxiliary emotion-labeled text and audio corpora to train emotion-specific embeddings and use transfer learning in order to address the problem of insufficient annotated multimodal data available. All these embeddings are then combined into a joint representation in a multimodal fusion layer and finally a recurrent neural network is used to predict the mental disorder. Our results show that mental disorders can be predicted with acceptable accuracy through multimodal analysis of clinical interviews.


Unsupervised Behavior Change Detection in Multidimensional Data Streams for Maritime Traffic Monitoring

arXiv.org Artificial Intelligence

The worldwide growth of maritime traffic and the development of the Automatic Identification System (AIS) has led to advances in monitoring systems for preventing vessel accidents and detecting illegal activities. In this work, we describe research gaps and challenges in machine learning for vessel behavior change and event detection, considering several constraints imposed by real-time data streams and the maritime monitoring domain. As a starting point, we investigate how unsupervised and semi-supervised change detection methods may be employed for identifying shifts in vessel behavior, aiming to detect and label unusual events.