Not enough data to create a plot.
Try a different view from the menu above.
Martin, Rodney
Occupant Plugload Management for Demand Response in Commercial Buildings: Field Experimentation and Statistical Characterization
Poolla, Chaitanya, Ishihara, Abraham K., Liddell, Dan, Martin, Rodney, Rosenberg, Steven
Commercial buildings account for approximately 36% of US electricity consumption, of which nearly two-thirds is met by fossil fuels [1] resulting in an adverse impact on the environment. Reducing this impact requires improving energy efficiency and lowering energy consumption. Most existing studies focus on designing methods to regulate and reduce HVAC and lighting energy consumption. However, few studies have focused on the control of occupant plugload energy consumption. In this study, we conducted multiple experiments to analyze changes in occupant plugload energy consumption due to monetary incentives and/or feedback. The experiments were performed in government office and university buildings at NASA Research Park located in Moffett Field, CA. Analysis of the data reveal significant plugload energy reduction can be achieved via feedback and/or incentive mechanisms. Autoregressive models are used to predict expected plugload savings in the presence of exogenous variables. The results of this study suggest that occupant-in-the-loop control architectures have the potential to reduce energy consumption and hence lower the carbon footprint of commercial buildings.
Reports of the Workshops of the Thirty-First AAAI Conference on Artificial Intelligence
Anderson, Monica (University of Alabama) | Barták, Roman (Charles University) | Brownstein, John S. (Boston Children's Hospital, Harvard University) | Buckeridge, David L. (McGill University) | Eldardiry, Hoda (Palo Alto Research Center) | Geib, Christopher (Drexel University) | Gini, Maria (University of Minnesota) | Isaksen, Aaron (New York University) | Keren, Sarah (Technion University) | Laddaga, Robert (Vanderbilt University) | Lisy, Viliam (Czech Technical University) | Martin, Rodney (NASA Ames Research Center) | Martinez, David R. (MIT Lincoln Laboratory) | Michalowski, Martin (University of Ottawa) | Michael, Loizos (Open University of Cyprus) | Mirsky, Reuth (Ben-Gurion University) | Nguyen, Thanh (University of Michigan) | Paul, Michael J. (University of Colorado Boulder) | Pontelli, Enrico (New Mexico State University) | Sanner, Scott (University of Toronto) | Shaban-Nejad, Arash (University of Tennessee) | Sinha, Arunesh (University of Michigan) | Sohrabi, Shirin (IBM T. J. Watson Research Center) | Sricharan, Kumar (Palo Alto Research Center) | Srivastava, Biplav (IBM T. J. Watson Research Center) | Stefik, Mark (Palo Alto Research Center) | Streilein, William W. (MIT Lincoln Laboratory) | Sturtevant, Nathan (University of Denver) | Talamadupula, Kartik (IBM T. J. Watson Research Center) | Thielscher, Michael (University of New South Wales) | Togelius, Julian (New York University) | Tran, So Cao (New Mexico State University) | Tran-Thanh, Long (University of Southampton) | Wagner, Neal (MIT Lincoln Laboratory) | Wallace, Byron C. (Northeastern University) | Wilk, Szymon (Poznan University of Technology) | Zhu, Jichen (Drexel University)
Reports of the Workshops of the Thirty-First AAAI Conference on Artificial Intelligence
Anderson, Monica (University of Alabama) | Barták, Roman (Charles University) | Brownstein, John S. (Boston Children's Hospital, Harvard University) | Buckeridge, David L. (McGill University) | Eldardiry, Hoda (Palo Alto Research Center) | Geib, Christopher (Drexel University) | Gini, Maria (University of Minnesota) | Isaksen, Aaron (New York University) | Keren, Sarah (Technion University) | Laddaga, Robert (Vanderbilt University) | Lisy, Viliam (Czech Technical University) | Martin, Rodney (NASA Ames Research Center) | Martinez, David R. (MIT Lincoln Laboratory) | Michalowski, Martin (University of Ottawa) | Michael, Loizos (Open University of Cyprus) | Mirsky, Reuth (Ben-Gurion University) | Nguyen, Thanh (University of Michigan) | Paul, Michael J. (University of Colorado Boulder) | Pontelli, Enrico (New Mexico State University) | Sanner, Scott (University of Toronto) | Shaban-Nejad, Arash (University of Tennessee) | Sinha, Arunesh (University of Michigan) | Sohrabi, Shirin (IBM T. J. Watson Research Center) | Sricharan, Kumar (Palo Alto Research Center) | Srivastava, Biplav (IBM T. J. Watson Research Center) | Stefik, Mark (Palo Alto Research Center) | Streilein, William W. (MIT Lincoln Laboratory) | Sturtevant, Nathan (University of Denver) | Talamadupula, Kartik (IBM T. J. Watson Research Center) | Thielscher, Michael (University of New South Wales) | Togelius, Julian (New York University) | Tran, So Cao (New Mexico State University) | Tran-Thanh, Long (University of Southampton) | Wagner, Neal (MIT Lincoln Laboratory) | Wallace, Byron C. (Northeastern University) | Wilk, Szymon (Poznan University of Technology) | Zhu, Jichen (Drexel University)
The AAAI-17 workshop program included 17 workshops covering a wide range of topics in AI. Workshops were held Sunday and Monday, February 4-5, 2017 at the Hilton San Francisco Union Square in San Francisco, California, USA. This report contains summaries of 12 of the workshops, and brief abstracts of the remaining 5
Scalable Causal Learning for Predicting Adverse Events in Smart Buildings
Basak, Aniruddha (Carnegie Mellon University, Silicon Valley Campus) | Mengshoel, Ole (Carnegie Mellon University, Silicon Valley Campus) | Hosein, Stefan (University of the West Indies, St. Augustine) | Martin, Rodney (NASA Ames Research Center)
Emerging smart buildings, such as the NASA Sustainability Base (SB), have a broad range of energy-related systems, including systems for heating and cooling. While the innovative technologies found in SB and similar smart buildings have the potential to increase the usage of renewable energy, they also add substantial technical complexity. Consequently, managing a smart building can be a challenge compared to managing a traditional building, sometimes leading to adverse events including unintended thermal discomfort of occupants (“too hot” or “too cold”). Fortunately, today’s smart buildings are typically equipped with thousands of sensors, controlled by Building Automation Systems (BASs). However, manually monitoring a BAS time series data stream with thousands of values may lead to information overload for the people managing a smart building. We present here a novel technique, Scalable Causal Learning (SCL), that integrates dimensionality reduction and Bayesian network structure learning techniques. SCL solves two problems associated with the naive application of dimensionality reduction and causal machine learning techniques to BAS time series data: (i) using autoregressive methods for causal learning can lead to induction of spurious causes and (ii) inducing a causal graph from BAS sensor data using existing graph structure learning algorithms may not scale to large data sets. Our novel SCL method addresses both of these problems. We test SCL using time series data from the SB BAS, comparing it with a causal graph learning technique, the PC algorithm. The causal variables identified by SCL are effective in predicting adverse events, namely abnormally low room temperatures, in a conference room in SB. Specifically, the SCL method performs better than the PC algorithm in terms of false alarm rate, missed detection rate and detection time.
Identifying Contributing Factors of Occupant Thermal Discomfort in a Smart Building
Basak, Aniruddha (Carnegie Mellon University, Silicon Valley Campus) | Mengshoel, Ole (Carnegie Mellon University, Silicon Valley Campus) | Hosein, Stefan (University of the West Indies, St. Augustine) | Martin, Rodney (NASA Ames Research Center) | Jayakumaran, Jayasudha (Carnegie Mellon University, Silicon Valley Campus) | Morga, Mario Gurrola (Zapopan's Superior Institute of Technology) | Aghav, Ishwari (Carnegie Mellon University, Silicon Valley Campus)
Modeling occupant behavior in smart buildings to reduce energy usage in a more accurate fashion has garnered much recent attention in the literature. Predicting occupant comfort in buildings is a related and challenging problem. In some smart buildings, such as NASA AMES Sustainability Base, there are discrepancies between occupants' actual thermal discomfort and sensors based upon a weighted average of wet bulb, dry bulb, and mean radiant temperature intended to characterize thermal comfort. In this paper we attempt to find other contributing factors to occupant discomfort. For our experiment we use a dataset from a Building Automation System (BAS) in NASA Sustainability Base. We choose one conference room for our experiment and empirically establish the thermal discomfort level for the room's temperature sensor. We use various causality metrics and causal graphs to isolate candidate causes of the target room temperature. And we compare these feature sets according to their predictive capability of future instances of discomfort. Moreover, we establish a trade off between computational and statistical performance of adverse event prediction.