Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Martial Hebert
Learning to Model the Tail
Yu-Xiong Wang, Deva Ramanan, Martial Hebert
We describe an approach to learning from long-tailed, imbalanced datasets that are prevalent in real-world settings. Here, the challenge is to learn accurate "fewshot" models for classes in the tail of the class distribution, for which little data is available. We cast this problem as transfer learning, where knowledge from the data-rich classes in the head of the distribution is transferred to the data-poor classes in the tail. Our key insights are as follows. First, we propose to transfer meta-knowledge about learning-to-learn from the head classes.
Combining Low-Density Separators with CNNs
Yu-Xiong Wang, Martial Hebert
Predictive-State Decoders: Encoding the Future into Recurrent Networks
Arun Venkatraman, Nicholas Rhinehart, Wen Sun, Lerrel Pinto, Martial Hebert, Byron Boots, Kris Kitani, J. Bagnell
Recurrent neural networks (RNNs) are a vital modeling technique that rely on internal states learned indirectly by optimization of a supervised, unsupervised, or reinforcement training loss. RNNs are used to model dynamic processes that are characterized by underlying latent states whose form is often unknown, precluding its analytic representation inside an RNN. In the Predictive-State Representation (PSR) literature, latent state processes are modeled by an internal state representation that directly models the distribution of future observations, and most recent work in this area has relied on explicitly representing and targeting sufficient statistics of this probability distribution.
Learning to Model the Tail
Yu-Xiong Wang, Deva Ramanan, Martial Hebert
We describe an approach to learning from long-tailed, imbalanced datasets that are prevalent in real-world settings. Here, the challenge is to learn accurate "fewshot" models for classes in the tail of the class distribution, for which little data is available. We cast this problem as transfer learning, where knowledge from the data-rich classes in the head of the distribution is transferred to the data-poor classes in the tail. Our key insights are as follows. First, we propose to transfer meta-knowledge about learning-to-learn from the head classes.