Mark Bun


Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation

Neural Information Processing Systems

The simplest and most widely applied method for guaranteeing differential privacy is to add instance-independent noise to a statistic of interest that is scaled to its global sensitivity. However, global sensitivity is a worst-case notion that is often too conservative for realized dataset instances. We provide methods for scaling noise in an instance-dependent way and demonstrate that they provide greater accuracy under average-case distributional assumptions. Specifically, we consider the basic problem of privately estimating the mean of a real distribution from i.i.d.


Private Hypothesis Selection

Neural Information Processing Systems

We provide a differentially private algorithm for hypothesis selection. Given samples from an unknown probability distribution P and a set of m probability distributions H, the goal is to output, in a ε-differentially private manner, a distribution from H whose total variation distance to P is comparable to that of the best such distribution (which we denote by α).


Private Hypothesis Selection

Neural Information Processing Systems

We provide a differentially private algorithm for hypothesis selection. Given samples from an unknown probability distribution P and a set of m probability distributions H, the goal is to output, in a ε-differentially private manner, a distribution from H whose total variation distance to P is comparable to that of the best such distribution (which we denote by α).


Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation

Neural Information Processing Systems

The simplest and most widely applied method for guaranteeing differential privacy is to add instance-independent noise to a statistic of interest that is scaled to its global sensitivity. However, global sensitivity is a worst-case notion that is often too conservative for realized dataset instances. We provide methods for scaling noise in an instance-dependent way and demonstrate that they provide greater accuracy under average-case distributional assumptions. Specifically, we consider the basic problem of privately estimating the mean of a real distribution from i.i.d.