Goto

Collaborating Authors

 Marjieh, Raja


Large language models predict human sensory judgments across six modalities

arXiv.org Artificial Intelligence

Determining the extent to which the perceptual world can be recovered from language is a longstanding problem in philosophy and cognitive science. We show that state-of-the-art large language models can unlock new insights into this problem by providing a lower bound on the amount of perceptual information that can be extracted from language. Specifically, we elicit pairwise similarity judgments from GPT models across six psychophysical datasets. We show that the judgments are significantly correlated with human data across all domains, recovering well-known representations like the color wheel and pitch spiral. Surprisingly, we find that a model (GPT-4) co-trained on vision and language does not necessarily lead to improvements specific to the visual modality. To study the influence of specific languages on perception, we also apply the models to a multilingual color-naming task. We find that GPT-4 replicates cross-linguistic variation in English and Russian illuminating the interaction of language and perception.


The Universal Law of Generalization Holds for Naturalistic Stimuli

arXiv.org Artificial Intelligence

Shepard's universal law of generalization is a remarkable hypothesis about how intelligent organisms should perceive similarity. In its broadest form, the universal law states that the level of perceived similarity between a pair of stimuli should decay as a concave function of their distance when embedded in an appropriate psychological space. While extensively studied, evidence in support of the universal law has relied on low-dimensional stimuli and small stimulus sets that are very different from their real-world counterparts. This is largely because pairwise comparisons - as required for similarity judgments - scale quadratically in the number of stimuli. We provide direct evidence for the universal law in a naturalistic high-dimensional regime by analyzing an existing dataset of 214, 200 human similarity judgments and a newly collected dataset of 390, 819 human generalization judgments (N = 2406 US participants) across three sets of natural images. The Universal Law of Generalization Holds for Naturalistic Stimuli Statement of Relevance Humans constantly form generalizations, whether when trying to identify the color of an object or reasoning about which action to take based on past experiences.


Words are all you need? Language as an approximation for human similarity judgments

arXiv.org Artificial Intelligence

Human similarity judgments are a powerful supervision signal for machine learning applications based on techniques such as contrastive learning, information retrieval, and model alignment, but classical methods for collecting human similarity judgments are too expensive to be used at scale. Recent methods propose using pre-trained deep neural networks (DNNs) to approximate human similarity, but pre-trained DNNs may not be available for certain domains (e.g., medical images, low-resource languages) and their performance in approximating human similarity has not been extensively tested. We conducted an evaluation of 611 pre-trained models across three domains -- images, audio, video -- and found that there is a large gap in performance between human similarity judgments and pre-trained DNNs. To address this gap, we propose a new class of similarity approximation methods based on language. To collect the language data required by these new methods, we also developed and validated a novel adaptive tag collection pipeline. We find that our proposed language-based methods are significantly cheaper, in the number of human judgments, than classical methods, but still improve performance over the DNN-based methods. Finally, we also develop `stacked' methods that combine language embeddings with DNN embeddings, and find that these consistently provide the best approximations for human similarity across all three of our modalities. Based on the results of this comprehensive study, we provide a concise guide for researchers interested in collecting or approximating human similarity data. To accompany this guide, we also release all of the similarity and language data, a total of 206,339 human judgments, that we collected in our experiments, along with a detailed breakdown of all modeling results.


Using Natural Language and Program Abstractions to Instill Human Inductive Biases in Machines

arXiv.org Artificial Intelligence

Strong inductive biases give humans the ability to quickly learn to perform a variety of tasks. Although meta-learning is a method to endow neural networks with useful inductive biases, agents trained by meta-learning may sometimes acquire very different strategies from humans. We show that co-training these agents on predicting representations from natural language task descriptions and programs induced to generate such tasks guides them toward more human-like inductive biases. Human-generated language descriptions and program induction models that add new learned primitives both contain abstract concepts that can compress description length. Co-training on these representations result in more human-like behavior in downstream meta-reinforcement learning agents than less abstract controls (synthetic language descriptions, program induction without learned primitives), suggesting that the abstraction supported by these representations is key.


Around the world in 60 words: A generative vocabulary test for online research

arXiv.org Artificial Intelligence

Conducting experiments with diverse participants in their native languages can uncover insights into culture, cognition, and language that may not be revealed otherwise. However, conducting these experiments online makes it difficult to validate self-reported language proficiency. Furthermore, existing proficiency tests are small and cover only a few languages. We present an automated pipeline to generate vocabulary tests using text from Wikipedia. Our pipeline samples rare nouns and creates pseudowords with the same low-level statistics. Six behavioral experiments (N=236) in six countries and eight languages show that (a) our test can distinguish between native speakers of closely related languages, (b) the test is reliable ($r=0.82$), and (c) performance strongly correlates with existing tests (LexTale) and self-reports. We further show that test accuracy is negatively correlated with the linguistic distance between the tested and the native language. Our test, available in eight languages, can easily be extended to other languages.


Analyzing Diffusion as Serial Reproduction

arXiv.org Machine Learning

Diffusion models are a class of generative models that learn to synthesize samples by inverting a diffusion process that gradually maps data into noise. While these models have enjoyed great success recently, a full theoretical understanding of their observed properties is still lacking, in particular, their weak sensitivity to the choice of noise family and the role of adequate scheduling of noise levels for good synthesis. By identifying a correspondence between diffusion models and a well-known paradigm in cognitive science known as serial reproduction, whereby human agents iteratively observe and reproduce stimuli from memory, we show how the aforementioned properties of diffusion models can be explained as a natural consequence of this correspondence. We then complement our theoretical analysis with simulations that exhibit these key features. Our work highlights how classic paradigms in cognitive science can shed light on state-of-the-art machine learning problems.


Gibbs Sampling with People

arXiv.org Artificial Intelligence

A core problem in cognitive science and machine learning is to understand how humans derive semantic representations from perceptual objects, such as color from an apple, pleasantness from a musical chord, or trustworthiness from a face. Markov Chain Monte Carlo with People (MCMCP) is a prominent method for studying such representations, in which participants are presented with binary choice trials constructed such that the decisions follow a Markov Chain Monte Carlo acceptance rule. However, MCMCP's binary choice paradigm generates relatively little information per trial, and its local proposal function makes it slow to explore the parameter space and find the modes of the distribution. Here we therefore generalize MCMCP to a continuous-sampling paradigm, where in each iteration the participant uses a slider to continuously manipulate a single stimulus dimension to optimize a given criterion such as 'pleasantness'. We formulate both methods from a utility-theory perspective, and show that the new method can be interpreted as 'Gibbs Sampling with People' (GSP). Further, we introduce an aggregation parameter to the transition step, and show that this parameter can be manipulated to flexibly shift between Gibbs sampling and deterministic optimization. In an initial study, we show GSP clearly outperforming MCMCP; we then show that GSP provides novel and interpretable results in three other domains, namely musical chords, vocal emotions, and faces. We validate these results through large-scale perceptual rating experiments. The final experiments combine GSP with a state-of-the-art image synthesis network (StyleGAN) and a recent network interpretability technique (GANSpace), enabling GSP to efficiently explore high-dimensional perceptual spaces, and demonstrating how GSP can be a powerful tool for jointly characterizing semantic representations in humans and machines.