Not enough data to create a plot.
Try a different view from the menu above.
Marinescu, Radu
AND/OR Multi-Valued Decision Diagrams (AOMDDs) for Graphical Models
Mateescu, Robert, Dechter, Rina, Marinescu, Radu
Inspired by the recently introduced framework of AND/OR search spaces for graphical models, we propose to augment Multi-Valued Decision Diagrams (MDD) with AND nodes, in order to capture function decomposition structure and to extend these compiled data structures to general weighted graphical models (e.g., probabilistic models). We present the AND/OR Multi-Valued Decision Diagram (AOMDD) which compiles a graphical model into a canonical form that supports polynomial (e.g., solution counting, belief updating) or constant time (e.g. equivalence of graphical models) queries. We provide two algorithms for compiling the AOMDD of a graphical model. The first is search-based, and works by applying reduction rules to the trace of the memory intensive AND/OR search algorithm. The second is inference-based and uses a Bucket Elimination schedule to combine the AOMDDs of the input functions via the the APPLY operator. For both algorithms, the compilation time and the size of the AOMDD are, in the worst case, exponential in the treewidth of the graphical model, rather than pathwidth as is known for ordered binary decision diagrams (OBDDs). We introduce the concept of semantic treewidth, which helps explain why the size of a decision diagram is often much smaller than the worst case bound. We provide an experimental evaluation that demonstrates the potential of AOMDDs.
Systematic vs. Non-systematic Algorithms for Solving the MPE Task
Marinescu, Radu, Kask, Kalev, Dechter, Rina
The paper continues the study of partitioning based inference of heuristics for search in the context of solving the Most Probable Explanation task in Bayesian Networks. We compare two systematic Branch and Bound search algorithms, BBBT (for which the heuristic information is constructed during search and allows dynamic variable/value ordering) and its predecessor BBMB (for which the heuristic information is pre-compiled), against a number of popular local search algorithms for the MPE problem. We show empirically that, when viewed as approximation schemes, BBBT/BBMB are superior to all of these best known SLS algorithms, especially when the domain sizes increase beyond 2. This is in contrast with the performance of SLS vs. systematic search on CSP/SAT problems, where SLS often significantly outperforms systematic algorithms. As far as we know, BBBT/BBMB are currently the best performing algorithms for solving the MPE task.
Search Algorithms for m Best Solutions for Graphical Models
Dechter, Rina (University of California, Irvine) | Flerova, Natalia (University of California, Irvine) | Marinescu, Radu (IBM Research)
The paper focuses on finding the m best solutions to combinatorial optimization problems using Best-First or Branchand- Bound search. Specifically, we present m-A*, extending the well-known A* to the m-best task, and prove that all its desirable properties, including soundness, completeness and optimal efficiency, are maintained. Since Best-First algorithms have memory problems, we also extend the memoryefficient Depth-First Branch-and-Bound to the m-best task. We extend both algorithms to optimization tasks over graphical models (e.g., Weighted CSP and MPE in Bayesian networks), provide complexity analysis and an empirical evaluation. Our experiments with 5 variants of Best-First and Branch-and-Bound confirm that Best-First is largely superior when memory is available, but Branch-and-Bound is more robust, while both styles of search benefit greatly when the heuristic evaluation function has increased accuracy.
Best-First AND/OR Search for Most Probable Explanations
Marinescu, Radu, Dechter, Rina
The paper evaluates the power of best-first search over AND/OR search spaces for solving the Most Probable Explanation (MPE) task in Bayesian networks. The main virtue of the AND/OR representation of the search space is its sensitivity to the structure of the problem, which can translate into significant time savings. In recent years depth-first AND/OR Branch-and- Bound algorithms were shown to be very effective when exploring such search spaces, especially when using caching. Since best-first strategies are known to be superior to depth-first when memory is utilized, exploring the best-first control strategy is called for. The main contribution of this paper is in showing that a recent extension of AND/OR search algorithms from depth-first Branch-and-Bound to best-first is indeed very effective for computing the MPE in Bayesian networks. We demonstrate empirically the superiority of the best-first search approach on various probabilistic networks.
Order-of-Magnitude Influence Diagrams
Marinescu, Radu, Wilson, Nic
In this paper, we develop a qualitative theory of influence diagrams that can be used to model and solve sequential decision making tasks when only qualitative (or imprecise) information is available. Our approach is based on an order-of-magnitude approximation of both probabilities and utilities and allows for specifying partially ordered preferences via sets of utility values. We also propose a dedicated variable elimination algorithm that can be applied for solving order-of-magnitude influence diagrams.