Goto

Collaborating Authors

 Mao, Jiayuan


Hierarchical Motion Understanding via Motion Programs

arXiv.org Artificial Intelligence

Current approaches to video analysis of human motion focus on raw pixels or keypoints as the basic units of reasoning. We posit that adding higher-level motion primitives, which can capture natural coarser units of motion such as backswing or follow-through, can be used to improve downstream analysis tasks. This higher level of abstraction can also capture key features, such as loops of repeated primitives, that are currently inaccessible at lower levels of representation. We therefore introduce Motion Programs, a neuro-symbolic, program-like representation that expresses motions as a composition of high-level primitives. We also present a system for automatically inducing motion programs from videos of human motion and for leveraging motion programs in video synthesis. Experiments show that motion programs can accurately describe a diverse set of human motions and the inferred programs contain semantically meaningful motion primitives, such as arm swings and jumping jacks. Our representation also benefits downstream tasks such as video interpolation and video prediction and outperforms off-the-shelf models. We further demonstrate how these programs can detect diverse kinds of repetitive motion and facilitate interactive video editing.


Grounding Physical Concepts of Objects and Events Through Dynamic Visual Reasoning

arXiv.org Artificial Intelligence

We study the problem of dynamic visual reasoning on raw videos. This is a challenging problem; currently, state-of-the-art models often require dense supervision on physical object properties and events from simulation, which are impractical to obtain in real life. In this paper, we present the Dynamic Concept Learner (DCL), a unified framework that grounds physical objects and events from video and language. DCL first adopts a trajectory extractor to track each object over time and to represent it as a latent, object-centric feature vector. Building upon this object-centric representation, DCL learns to approximate the dynamic interaction among objects using graph networks. DCL further incorporates a semantic parser to parse questions into semantic programs and, finally, a program executor to run the program to answer the question, levering the learned dynamics model. After training, DCL can detect and associate objects across the frames, ground visual properties, and physical events, understand the causal relationship between events, make future and counterfactual predictions, and leverage these extracted presentations for answering queries. DCL achieves state-of-the-art performance on CLEVRER, a challenging causal video reasoning dataset, even without using ground-truth attributes and collision labels from simulations for training. We further test DCL on a newly proposed video-retrieval and event localization dataset derived from CLEVRER, showing its strong generalization capacity.


Language-Mediated, Object-Centric Representation Learning

arXiv.org Machine Learning

We present Language-mediated, Object-centric Representation Learning (LORL), a paradigm for learning disentangled, object-centric scene representations from vision and language. LORL builds upon recent advances in unsupervised object segmentation, notably MONet and Slot Attention. While these algorithms learn an object-centric representation just by reconstructing the input image, LORL enables them to further learn to associate the learned representations to concepts, i.e., words for object categories, properties, and spatial relationships, from language input. These object-centric concepts derived from language facilitate the learning of object-centric representations. LORL can be integrated with various unsupervised segmentation algorithms that are language-agnostic. Experiments show that the integration of LORL consistently improves the object segmentation performance of MONet and Slot Attention on two datasets via the help of language. We also show that concepts learned by LORL, in conjunction with segmentation algorithms such as MONet, aid downstream tasks such as referring expression comprehension.


Object-Centric Diagnosis of Visual Reasoning

arXiv.org Artificial Intelligence

When answering questions about an image, it not only needs knowing what -- understanding the fine-grained contents (e.g., objects, relationships) in the image, but also telling why -- reasoning over grounding visual cues to derive the answer for a question. Over the last few years, we have seen significant progress on visual question answering. Though impressive as the accuracy grows, it still lags behind to get knowing whether these models are undertaking grounding visual reasoning or just leveraging spurious correlations in the training data. Recently, a number of works have attempted to answer this question from perspectives such as grounding and robustness. However, most of them are either focusing on the language side or coarsely studying the pixel-level attention maps. In this paper, by leveraging the step-wise object grounding annotations provided in the GQA dataset, we first present a systematical object-centric diagnosis of visual reasoning on grounding and robustness, particularly on the vision side. According to the extensive comparisons across different models, we find that even models with high accuracy are not good at grounding objects precisely, nor robust to visual content perturbations. In contrast, symbolic and modular models have a relatively better grounding and robustness, though at the cost of accuracy. To reconcile these different aspects, we further develop a diagnostic model, namely Graph Reasoning Machine. Our model replaces purely symbolic visual representation with probabilistic scene graph and then applies teacher-forcing training for the visual reasoning module. The designed model improves the performance on all three metrics over the vanilla neural-symbolic model while inheriting the transparency. Further ablation studies suggest that this improvement is mainly due to more accurate image understanding and proper intermediate reasoning supervisions.


Multi-Plane Program Induction with 3D Box Priors

arXiv.org Machine Learning

We consider two important aspects in understanding and editing images: modeling regular, program-like texture or patterns in 2D planes, and 3D posing of these planes in the scene. Unlike prior work on image-based program synthesis, which assumes the image contains a single visible 2D plane, we present Box Program Induction (BPI), which infers a program-like scene representation that simultaneously models repeated structure on multiple 2D planes, the 3D position and orientation of the planes, and camera parameters, all from a single image. Our model assumes a box prior, i.e., that the image captures either an inner view or an outer view of a box in 3D. It uses neural networks to infer visual cues such as vanishing points or wireframe lines to guide a search-based algorithm to find the program that best explains the image. Such a holistic, structured scene representation enables 3D-aware interactive image editing operations such as inpainting missing pixels, changing camera parameters, and extrapolate the image contents.


Perspective Plane Program Induction from a Single Image

arXiv.org Machine Learning

We study the inverse graphics problem of inferring a holistic representation for natural images. Given an input image, our goal is to induce a neuro-symbolic, program-like representation that jointly models camera poses, object locations, and global scene structures. Such high-level, holistic scene representations further facilitate low-level image manipulation tasks such as inpainting. We formulate this problem as jointly finding the camera pose and scene structure that best describe the input image. The benefits of such joint inference are two-fold: scene regularity serves as a new cue for perspective correction, and in turn, correct perspective correction leads to a simplified scene structure, similar to how the correct shape leads to the most regular texture in shape from texture. Our proposed framework, Perspective Plane Program Induction (P3I), combines search-based and gradient-based algorithms to efficiently solve the problem. P3I outperforms a set of baselines on a collection of Internet images, across tasks including camera pose estimation, global structure inference, and down-stream image manipulation tasks.


Visual Concept-Metaconcept Learning

arXiv.org Machine Learning

Humans reason with concepts and metaconcepts: we recognize red and green from visual input; we also understand that they describe the same property of objects (i.e., the color). In this paper, we propose the visual concept-metaconcept learner (VCML) for joint learning of concepts and metaconcepts from images and associated question-answer pairs. The key is to exploit the bidirectional connection between visual concepts and metaconcepts. Visual representations provide grounding cues for predicting relations between unseen pairs of concepts. Knowing that red and green describe the same property of objects, we generalize to the fact that cube and sphere also describe the same property of objects, since they both categorize the shape of objects. Meanwhile, knowledge about metaconcepts empowers visual concept learning from limited, noisy, and even biased data. From just a few examples of purple cubes we can understand a new color purple, which resembles the hue of the cubes instead of the shape of them. Evaluation on both synthetic and real-world datasets validates our claims.


Program-Guided Image Manipulators

arXiv.org Machine Learning

Humans are capable of building holistic representations for images at various levels, from local objects, to pairwise relations, to global structures. The interpretation of structures involves reasoning over repetition and symmetry of the objects in the image. In this paper, we present the Program-Guided Image Manipulator (PG-IM), inducing neuro-symbolic program-like representations to represent and manipulate images. Given an image, PG-IM detects repeated patterns, induces symbolic programs, and manipulates the image using a neural network that is guided by the program. PG-IM learns from a single image, exploiting its internal statistics. Despite trained only on image inpainting, PG-IM is directly capable of extrapolation and regularity editing in a unified framework. Extensive experiments show that PG-IM achieves superior performance on all the tasks.


Neurally-Guided Structure Inference

arXiv.org Artificial Intelligence

Most structure inference methods either rely on exhaustive search or are purely data-driven. Exhaustive search robustly infers the structure of arbitrarily complex data, but it is slow. Data-driven methods allow efficient inference, but do not generalize when test data have more complex structures than training data. In this paper, we propose a hybrid inference algorithm, the Neurally-Guided Structure Inference (NG-SI), keeping the advantages of both search-based and data-driven methods. The key idea of NG-SI is to use a neural network to guide the hierarchical, layer-wise search over the compositional space of structures. We evaluate our algorithm on two representative structure inference tasks: probabilistic matrix decomposition and symbolic program parsing. It outperforms data-driven and search-based alternatives on both tasks.


Neural Logic Machines

arXiv.org Artificial Intelligence

We propose the Neural Logic Machine (NLM), a neural-symbolic architecture for both inductive learning and logic reasoning. NLMs exploit the power of both neural networks---as function approximators, and logic programming---as a symbolic processor for objects with properties, relations, logic connectives, and quantifiers. After being trained on small-scale tasks (such as sorting short arrays), NLMs can recover lifted rules, and generalize to large-scale tasks (such as sorting longer arrays). In our experiments, NLMs achieve perfect generalization in a number of tasks, from relational reasoning tasks on the family tree and general graphs, to decision making tasks including sorting arrays, finding shortest paths, and playing the blocks world. Most of these tasks are hard to accomplish for neural networks or inductive logic programming alone.