Goto

Collaborating Authors

 Mao, Cheng


Spectral Graph Matching and Regularized Quadratic Relaxations I: The Gaussian Model

arXiv.org Machine Learning

Graph matching aims at finding the vertex correspondence between two unlabeled graphs that maximizes the total edge weight correlation. This amounts to solving a computationally intractable quadratic assignment problem. In this paper we propose a new spectral method, GRAph Matching by Pairwise eigen-Alignments (GRAMPA). Departing from prior spectral approaches that only compare top eigenvectors, or eigenvectors of the same order, GRAMPA first constructs a similarity matrix as a weighted sum of outer products between all pairs of eigenvectors of the two graphs, with weights given by a Cauchy kernel applied to the separation of the corresponding eigenvalues, then outputs a matching by a simple rounding procedure. The similarity matrix can also be interpreted as the solution to a regularized quadratic programming relaxation of the quadratic assignment problem. For the Gaussian Wigner model in which two complete graphs on $n$ vertices have Gaussian edge weights with correlation coefficient $1-\sigma^2$, we show that GRAMPA exactly recovers the correct vertex correspondence with high probability when $\sigma = O(\frac{1}{\log n})$. This matches the state of the art of polynomial-time algorithms, and significantly improves over existing spectral methods which require $\sigma$ to be polynomially small in $n$. The superiority of GRAMPA is also demonstrated on a variety of synthetic and real datasets, in terms of both statistical accuracy and computational efficiency. Universality results, including similar guarantees for dense and sparse Erd\H{o}s-R\'{e}nyi graphs, are deferred to the companion paper.


Estimation of Monge Matrices

arXiv.org Machine Learning

Monge matrices and their permuted versions known as pre-Monge matrices naturally appear in many domains across science and engineering. While the rich structural properties of such matrices have long been leveraged for algorithmic purposes, little is known about their impact on statistical estimation. In this work, we propose to view this structure as a shape constraint and study the problem of estimating a Monge matrix subject to additive random noise. More specifically, we establish the minimax rates of estimation of Monge and pre-Monge matrices. In the case of pre-Monge matrices, the minimax-optimal least-squares estimator is not efficiently computable, and we propose two efficient estimators and establish their rates of convergence. Our theoretical findings are supported by numerical experiments.


Towards Optimal Estimation of Bivariate Isotonic Matrices with Unknown Permutations

arXiv.org Machine Learning

Many applications, including rank aggregation, crowd-labeling, and graphon estimation, can be modeled in terms of a bivariate isotonic matrix with unknown permutations acting on its rows and columns. We consider the problem of estimating such a matrix based on noisy observations of a subset of its entries, and design and analyze polynomial-time algorithms that improve upon the state of the art. In particular, our results imply that any such $n \times n$ matrix can be estimated efficiently in the normalized, squared Frobenius norm at rate $\widetilde{\mathcal O}(n^{-3/4})$, thus narrowing the gap between $\widetilde{\mathcal O}(n^{-1})$ and $\widetilde{\mathcal O}(n^{-1/2})$, hitherto the rates of the most statistically and computationally efficient methods, respectively. Additionally, our algorithms are minimax optimal in another natural metric that measures how well an estimate captures each row of the matrix. Along the way, we prove matching upper and lower bounds on the minimax radii of certain cone testing problems, which may be of independent interest.


Breaking the $1/\sqrt{n}$ Barrier: Faster Rates for Permutation-based Models in Polynomial Time

arXiv.org Machine Learning

Many applications, including rank aggregation and crowd-labeling, can be modeled in terms of a bivariate isotonic matrix with unknown permutations acting on its rows and columns. We consider the problem of estimating such a matrix based on noisy observations of a subset of its entries, and design and analyze polynomial-time algorithms that improve upon the state of the art. In particular, our results imply that any such $n \times n$ matrix can be estimated efficiently in the normalized Frobenius norm at rate $\widetilde{\mathcal O}(n^{-3/4})$, thus narrowing the gap between $\widetilde{\mathcal O}(n^{-1})$ and $\widetilde{\mathcal O}(n^{-1/2})$, which were hitherto the rates of the most statistically and computationally efficient methods, respectively.


Minimax Rates and Efficient Algorithms for Noisy Sorting

arXiv.org Machine Learning

There has been a recent surge of interest in studying permutation-based models for ranking from pairwise comparison data. Despite being structurally richer and more robust than parametric ranking models, permutation-based models are less well understood statistically and generally lack efficient learning algorithms. In this work, we study a prototype of permutation-based ranking models, namely, the noisy sorting model. We establish the optimal rates of learning the model under two sampling procedures. Furthermore, we provide a fast algorithm to achieve near-optimal rates if the observations are sampled independently. Along the way, we discover properties of the symmetric group which are of theoretical interest.


Worst-case vs Average-case Design for Estimation from Fixed Pairwise Comparisons

arXiv.org Machine Learning

Pairwise comparison data arises in many domains, including tournament rankings, web search, and preference elicitation. Given noisy comparisons of a fixed subset of pairs of items, we study the problem of estimating the underlying comparison probabilities under the assumption of strong stochastic transitivity (SST). We also consider the noisy sorting subclass of the SST model. We show that when the assignment of items to the topology is arbitrary, these permutation-based models, unlike their parametric counterparts, do not admit consistent estimation for most comparison topologies used in practice. We then demonstrate that consistent estimation is possible when the assignment of items to the topology is randomized, thus establishing a dichotomy between worst-case and average-case designs. We propose two estimators in the average-case setting and analyze their risk, showing that it depends on the comparison topology only through the degree sequence of the topology. The rates achieved by these estimators are shown to be optimal for a large class of graphs. Our results are corroborated by simulations on multiple comparison topologies.


Optimal Rates of Statistical Seriation

arXiv.org Machine Learning

Given a matrix the seriation problem consists in permuting its rows in such way that all its columns have the same shape, for example, they are monotone increasing. We propose a statistical approach to this problem where the matrix of interest is observed with noise and study the corresponding minimax rate of estimation of the matrices. Specifically, when the columns are either unimodal or monotone, we show that the least squares estimator is optimal up to logarithmic factors and adapts to matrices with a certain natural structure. Finally, we propose a computationally efficient estimator in the monotonic case and study its performance both theoretically and experimentally. Our work is at the intersection of shape constrained estimation and recent work that involves permutation learning, such as graph denoising and ranking.