Plotting

 Manya, Felip


BandMaxSAT: A Local Search MaxSAT Solver with Multi-armed Bandit

arXiv.org Artificial Intelligence

We address Partial MaxSAT (PMS) and Weighted PMS (WPMS), two practical generalizations of the MaxSAT problem, and propose a local search algorithm called BandMaxSAT, that applies a multi-armed bandit to guide the search direction, for these problems. The bandit in our method is associated with all the soft clauses in the input (W)PMS instance. Each arm corresponds to a soft clause. The bandit model can help BandMaxSAT to select a good direction to escape from local optima by selecting a soft clause to be satisfied in the current step, that is, selecting an arm to be pulled. We further propose an initialization method for (W)PMS that prioritizes both unit and binary clauses when producing the initial solutions. Extensive experiments demonstrate that BandMaxSAT significantly outperforms the state-of-the-art (W)PMS local search algorithm SATLike3.0. Specifically, the number of instances in which BandMaxSAT obtains better results is about twice that obtained by SATLike3.0. We further combine BandMaxSAT with the complete solver TT-Open-WBO-Inc. The resulting solver BandMaxSAT-c also outperforms some of the best state-of-the-art complete (W)PMS solvers, including SATLike-c, Loandra and TT-Open-WBO-Inc.


An Exact Algorithm for the Maximum Weight Clique Problem in Large Graphs

AAAI Conferences

We describe an exact branch-and-bound algorithm for the maximum weight clique problem (MWC), called WLMC, that is especially suited for large vertex-weighted graphs. WLMC incorporates two original contributions: a preprocessing to derive an initial vertex ordering and to reduce the size of the graph, and incremental vertex-weight splitting to reduce the number of branches in the search space. Experiments on representative large graphs from real-world applications show that WLMC greatly outperforms relevant exact and heuristic MWC algorithms, and refute the prevailing hypothesis that exact MWC algorithms are less adequate for large graphs than heuristic algorithms.