Mansour, Saab
Semi-Supervised Dialogue Abstractive Summarization via High-Quality Pseudolabel Selection
He, Jianfeng, Su, Hang, Cai, Jason, Shalyminov, Igor, Song, Hwanjun, Mansour, Saab
Semi-supervised dialogue summarization (SSDS) leverages model-generated summaries to reduce reliance on human-labeled data and improve the performance of summarization models. While addressing label noise, previous works on semi-supervised learning primarily focus on natural language understanding tasks, assuming each sample has a unique label. However, these methods are not directly applicable to SSDS, as it is a generative task, and each dialogue can be summarized in different ways. In this work, we propose a novel scoring approach, SiCF, which encapsulates three primary dimensions of summarization model quality: Semantic invariance (indicative of model confidence), Coverage (factual recall), and Faithfulness (factual precision). Using the SiCF score, we select unlabeled dialogues with high-quality generated summaries to train summarization models. Comprehensive experiments on three public datasets demonstrate the effectiveness of SiCF scores in uncertainty estimation and semi-supervised learning for dialogue summarization tasks. Our code is available at \url{https://github.com/amazon-science/summarization-sicf-score}.
MAGID: An Automated Pipeline for Generating Synthetic Multi-modal Datasets
Aboutalebi, Hossein, Song, Hwanjun, Xie, Yusheng, Gupta, Arshit, Sun, Justin, Su, Hang, Shalyminov, Igor, Pappas, Nikolaos, Singh, Siffi, Mansour, Saab
Development of multimodal interactive systems is hindered by the lack of rich, multimodal (text, images) conversational data, which is needed in large quantities for LLMs. Previous approaches augment textual dialogues with retrieved images, posing privacy, diversity, and quality constraints. In this work, we introduce \textbf{M}ultimodal \textbf{A}ugmented \textbf{G}enerative \textbf{I}mages \textbf{D}ialogues (MAGID), a framework to augment text-only dialogues with diverse and high-quality images. Subsequently, a diffusion model is applied to craft corresponding images, ensuring alignment with the identified text. Finally, MAGID incorporates an innovative feedback loop between an image description generation module (textual LLM) and image quality modules (addressing aesthetics, image-text matching, and safety), that work in tandem to generate high-quality and multi-modal dialogues. We compare MAGID to other SOTA baselines on three dialogue datasets, using automated and human evaluation. Our results show that MAGID is comparable to or better than baselines, with significant improvements in human evaluation, especially against retrieval baselines where the image database is small.
DeAL: Decoding-time Alignment for Large Language Models
Huang, James Y., Sengupta, Sailik, Bonadiman, Daniele, Lai, Yi-an, Gupta, Arshit, Pappas, Nikolaos, Mansour, Saab, Kirchoff, Katrin, Roth, Dan
Large Language Models (LLMs) are nowadays expected to generate content aligned with human preferences. Current work focuses on alignment at model training time, through techniques such as Reinforcement Learning with Human Feedback (RLHF). However, it is unclear if such methods are an effective choice to teach alignment objectives to the model. First, the inability to incorporate multiple, custom rewards and reliance on a model developer's view of universal and static principles are key limitations. Second, the residual gaps in model training and the reliability of such approaches are also questionable (e.g. susceptibility to jail-breaking even after safety training). To address these, we propose DeAL, a framework that allows the user to customize reward functions and enables Decoding-time Alignment of LLMs (DeAL). At its core, we view decoding as a heuristic-guided search process and facilitate the use of a wide variety of alignment objectives. Our experiments with programmatic constraints such as keyword and length constraints (studied widely in the pre-LLM era) and abstract objectives such as harmlessness and helpfulness (proposed in the post-LLM era) show that we can DeAL with fine-grained trade-offs, improve adherence to alignment objectives, and address residual gaps in LLMs. Lastly, while DeAL can be effectively paired with RLHF and prompting techniques, its generality makes decoding slower, an optimization we leave for future work.
Enhancing Abstractiveness of Summarization Models through Calibrated Distillation
Song, Hwanjun, Shalyminov, Igor, Su, Hang, Singh, Siffi, Yao, Kaisheng, Mansour, Saab
Sequence-level knowledge distillation reduces the size of Seq2Seq models for more efficient abstractive summarization. However, it often leads to a loss of abstractiveness in summarization. In this paper, we propose a novel approach named DisCal to enhance the level of abstractiveness (measured by n-gram overlap) without sacrificing the informativeness (measured by ROUGE) of generated summaries. DisCal exposes diverse pseudo summaries with two supervision to the student model. Firstly, the best pseudo summary is identified in terms of abstractiveness and informativeness and used for sequence-level distillation. Secondly, their ranks are used to ensure the student model to assign higher prediction scores to summaries with higher ranks. Our experiments show that DisCal outperforms prior methods in abstractive summarization distillation, producing highly abstractive and informative summaries.
User Simulation with Large Language Models for Evaluating Task-Oriented Dialogue
Davidson, Sam, Romeo, Salvatore, Shu, Raphael, Gung, James, Gupta, Arshit, Mansour, Saab, Zhang, Yi
One of the major impediments to the development of new task-oriented dialogue (TOD) systems is the need for human evaluation at multiple stages and iterations of the development process. In an effort to move toward automated evaluation of TOD, we propose a novel user simulator built using recently developed large pretrained language models (LLMs). In order to increase the linguistic diversity of our system relative to the related previous work, we do not fine-tune the LLMs used by our system on existing TOD datasets; rather we use in-context learning to prompt the LLMs to generate robust and linguistically diverse output with the goal of simulating the behavior of human interlocutors. Unlike previous work, which sought to maximize goal success rate (GSR) as the primary metric of simulator performance, our goal is a system which achieves a GSR similar to that observed in human interactions with TOD systems. Using this approach, our current simulator is effectively able to interact with several TOD systems, especially on single-intent conversational goals, while generating lexically and syntactically diverse output relative to previous simulators that rely upon fine-tuned models. Finally, we collect a Human2Bot dataset of humans interacting with the same TOD systems with which we experimented in order to better quantify these achievements.
Conversation Style Transfer using Few-Shot Learning
Roy, Shamik, Shu, Raphael, Pappas, Nikolaos, Mansimov, Elman, Zhang, Yi, Mansour, Saab, Roth, Dan
Conventional text style transfer approaches focus on sentence-level style transfer without considering contextual information, and the style is described with attributes (e.g., formality). When applying style transfer in conversations such as task-oriented dialogues, existing approaches suffer from these limitations as context can play an important role and the style attributes are often difficult to define in conversations. In this paper, we introduce conversation style transfer as a few-shot learning problem, where the model learns to perform style transfer by observing only a few example dialogues in the target style. We propose a novel in-context learning approach to solve the task with style-free dialogues as a pivot. Human evaluation shows that by incorporating multi-turn context, the model is able to match the target style while having better appropriateness and semantic correctness compared to utterance/sentence-level style transfer. Additionally, we show that conversation style transfer can also benefit downstream tasks. For example, in multi-domain intent classification tasks, the F1 scores improve after transferring the style of training data to match the style of the test data.
NatCS: Eliciting Natural Customer Support Dialogues
Gung, James, Moeng, Emily, Rose, Wesley, Gupta, Arshit, Zhang, Yi, Mansour, Saab
Despite growing interest in applications based on natural customer support conversations, there exist remarkably few publicly available datasets that reflect the expected characteristics of conversations in these settings. Existing task-oriented dialogue datasets, which were collected to benchmark dialogue systems mainly in written human-to-bot settings, are not representative of real customer support conversations and do not provide realistic benchmarks for systems that are applied to natural data. To address this gap, we introduce NatCS, a multi-domain collection of spoken customer service conversations. We describe our process for collecting synthetic conversations between customers and agents based on natural language phenomena observed in real conversations. Compared to previous dialogue datasets, the conversations collected with our approach are more representative of real human-to-human conversations along multiple metrics. Finally, we demonstrate potential uses of NatCS, including dialogue act classification and intent induction from conversations as potential applications, showing that dialogue act annotations in NatCS provide more effective training data for modeling real conversations compared to existing synthetic written datasets. We publicly release NatCS to facilitate research in natural dialog systems
Intent Induction from Conversations for Task-Oriented Dialogue Track at DSTC 11
Gung, James, Shu, Raphael, Moeng, Emily, Rose, Wesley, Romeo, Salvatore, Benajiba, Yassine, Gupta, Arshit, Mansour, Saab, Zhang, Yi
With increasing demand for and adoption of virtual assistants, recent work has investigated ways to accelerate bot schema design through the automatic induction of intents or the induction of slots and dialogue states. However, a lack of dedicated benchmarks and standardized evaluation has made progress difficult to track and comparisons between systems difficult to make. This challenge track, held as part of the Eleventh Dialog Systems Technology Challenge, introduces a benchmark that aims to evaluate methods for the automatic induction of customer intents in a realistic setting of customer service interactions between human agents and customers. We propose two subtasks for progressively tackling the automatic induction of intents and corresponding evaluation methodologies. We then present three datasets suitable for evaluating the tasks and propose simple baselines. Finally, we summarize the submissions and results of the challenge track, for which we received submissions from 34 teams.
Robustification of Multilingual Language Models to Real-world Noise in Crosslingual Zero-shot Settings with Robust Contrastive Pretraining
Stickland, Asa Cooper, Sengupta, Sailik, Krone, Jason, Mansour, Saab, He, He
Advances in neural modeling have achieved state-of-the-art (SOTA) results on public natural language processing (NLP) benchmarks, at times surpassing human performance. However, there is a gap between public benchmarks and real-world applications where noise, such as typographical or grammatical mistakes, is abundant and can result in degraded performance. Unfortunately, works which evaluate the robustness of neural models on noisy data and propose improvements, are limited to the English language. Upon analyzing noise in different languages, we observe that noise types vary greatly across languages. Thus, existing investigations do not generalize trivially to multilingual settings. To benchmark the performance of pretrained multilingual language models, we construct noisy datasets covering five languages and four NLP tasks and observe a clear gap in the performance between clean and noisy data in the zero-shot cross-lingual setting. After investigating several ways to boost the robustness of multilingual models in this setting, we propose Robust Contrastive Pretraining (RCP). RCP combines data augmentation with a contrastive loss term at the pretraining stage and achieves large improvements on noisy (and original test data) across two sentence-level (+3.2%) and two sequence-labeling (+10 F1-score) multilingual classification tasks.
Dialog2API: Task-Oriented Dialogue with API Description and Example Programs
Shu, Raphael, Mansimov, Elman, Alkhouli, Tamer, Pappas, Nikolaos, Romeo, Salvatore, Gupta, Arshit, Mansour, Saab, Zhang, Yi, Roth, Dan
Functionality and dialogue experience are two important factors of task-oriented dialogue systems. Conventional approaches with closed schema (e.g., conversational semantic parsing) often fail as both the functionality and dialogue experience are strongly constrained by the underlying schema. We introduce a new paradigm for task-oriented dialogue - Dialog2API - to greatly expand the functionality and provide seamless dialogue experience. The conversational model interacts with the environment by generating and executing programs triggering a set of pre-defined APIs. The model also manages the dialogue policy and interact with the user through generating appropriate natural language responses. By allowing generating free-form programs, Dialog2API supports composite goals by combining different APIs, whereas unrestricted program revision provides natural and robust dialogue experience. To facilitate Dialog2API, the core model is provided with API documents, an execution environment and optionally some example dialogues annotated with programs. We propose an approach tailored for the Dialog2API, where the dialogue states are represented by a stack of programs, with most recently mentioned program on the top of the stack. Dialog2API can work with many application scenarios such as software automation and customer service. In this paper, we construct a dataset for AWS S3 APIs and present evaluation results of in-context learning baselines.