Plotting

 Manocha, Dinesh


Video Manipulations Beyond Faces: A Dataset with Human-Machine Analysis

arXiv.org Artificial Intelligence

As tools for content editing mature, and artificial intelligence (AI) based algorithms for synthesizing media grow, the presence of manipulated content across online media is increasing. This phenomenon causes the spread of misinformation, creating a greater need to distinguish between ``real'' and ``manipulated'' content. To this end, we present VideoSham, a dataset consisting of 826 videos (413 real and 413 manipulated). Many of the existing deepfake datasets focus exclusively on two types of facial manipulations -- swapping with a different subject's face or altering the existing face. VideoSham, on the other hand, contains more diverse, context-rich, and human-centric, high-resolution videos manipulated using a combination of 6 different spatial and temporal attacks. Our analysis shows that state-of-the-art manipulation detection algorithms only work for a few specific attacks and do not scale well on VideoSham. We performed a user study on Amazon Mechanical Turk with 1200 participants to understand if they can differentiate between the real and manipulated videos in VideoSham. Finally, we dig deeper into the strengths and weaknesses of performances by humans and SOTA-algorithms to identify gaps that need to be filled with better AI algorithms. We present the dataset at https://github.com/adobe-research/VideoSham-dataset.


AdaptiveON: Adaptive Outdoor Local Navigation Method For Stable and Reliable Actions

arXiv.org Artificial Intelligence

We present a novel outdoor navigation algorithm to generate stable and efficient actions to navigate a robot to reach a goal. We use a multi-stage training pipeline and show that our approach produces policies that result in stable and reliable robot navigation on complex terrains. Based on the Proximal Policy Optimization (PPO) algorithm, we developed a novel method to achieve multiple capabilities for outdoor navigation tasks, namely alleviating the robot's drifting, keeping the robot stable on bumpy terrains, avoiding climbing on hills with steep elevation changes, and avoiding collisions. Our training process mitigates the reality (sim-to-real) gap by introducing generalized environmental and robotic parameters and training with rich features of Lidar perception in a high-fidelity Unity simulator. We evaluate our method in both simulation and real world environments using Clearpath Husky and Jackal robots. Further, we compare our method against the state-of-the-art approaches and observe that, in the real world it improves stability by at least 30.7% on uneven terrains, reduces drifting by 8.08% and decreases the elevation changes by 14.75%.


HTRON:Efficient Outdoor Navigation with Sparse Rewards via Heavy Tailed Adaptive Reinforce Algorithm

arXiv.org Artificial Intelligence

We present a novel approach to improve the performance of deep reinforcement learning (DRL) based outdoor robot navigation systems. Most, existing DRL methods are based on carefully designed dense reward functions that learn the efficient behavior in an environment. We circumvent this issue by working only with sparse rewards (which are easy to design), and propose a novel adaptive Heavy-Tailed Reinforce algorithm for Outdoor Navigation called HTRON. Our main idea is to utilize heavy-tailed policy parametrizations which implicitly induce exploration in sparse reward settings. We evaluate the performance of HTRON against Reinforce, PPO and TRPO algorithms in three different outdoor scenarios: goal-reaching, obstacle avoidance, and uneven terrain navigation. We observe in average an increase of 34.41% in terms of success rate, a 15.15% decrease in the average time steps taken to reach the goal, and a 24.9% decrease in the elevation cost compared to the navigation policies obtained by the other methods. Further, we demonstrate that our algorithm can be transferred directly into a Clearpath Husky robot to perform outdoor terrain navigation in real-world scenarios.


An Intelligent Self-driving Truck System For Highway Transportation

arXiv.org Artificial Intelligence

Recently, there have been many advances in autonomous driving society, attracting a lot of attention from academia and industry. However, existing works mainly focus on cars, extra development is still required for self-driving truck algorithms and models. In this paper, we introduce an intelligent self-driving truck system. Our presented system consists of three main components, 1) a realistic traffic simulation module for generating realistic traffic flow in testing scenarios, 2) a high-fidelity truck model which is designed and evaluated for mimicking real truck response in real-world deployment, 3) an intelligent planning module with learning-based decision making algorithm and multi-mode trajectory planner, taking into account the truck's constraints, road slope changes, and the surrounding traffic flow. We provide quantitative evaluations for each component individually to demonstrate the fidelity and performance of each part. We also deploy our proposed system on a real truck and conduct real world experiments which shows our system's capacity of mitigating sim-to-real gap. Our code is available at https://github.com/InceptioResearch/IITS


FAST-RIR: Fast neural diffuse room impulse response generator

arXiv.org Artificial Intelligence

We present a neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment. Our FAST-RIR takes rectangular room dimensions, listener and speaker positions, and reverberation time as inputs and generates specular and diffuse reflections for a given acoustic environment. Our FAST-RIR is capable of generating RIRs for a given input reverberation time with an average error of 0.02s. We evaluate our generated RIRs in automatic speech recognition (ASR) applications using Google Speech API, Microsoft Speech API, and Kaldi tools. We show that our proposed FAST-RIR with batch size 1 is 400 times faster than a state-of-the-art diffuse acoustic simulator (DAS) on a CPU and gives similar performance to DAS in ASR experiments. Our FAST-RIR is 12 times faster than an existing GPU-based RIR generator (gpuRIR). We show that our FAST-RIR outperforms gpuRIR by 2.5% in an AMI far-field ASR benchmark.


METEOR: A Massive Dense & Heterogeneous Behavior Dataset for Autonomous Driving

arXiv.org Artificial Intelligence

We present a new and complex traffic dataset, METEOR, which captures traffic patterns in unstructured scenarios in India. METEOR consists of more than 1000 one-minute video clips, over 2 million annotated frames with ego-vehicle trajectories, and more than 13 million bounding boxes for surrounding vehicles or traffic agents. METEOR is a unique dataset in terms of capturing the heterogeneity of microscopic and macroscopic traffic characteristics. Furthermore, we provide annotations for rare and interesting driving behaviors such as cut-ins, yielding, overtaking, overspeeding, zigzagging, sudden lane changing, running traffic signals, driving in the wrong lanes, taking wrong turns, lack of right-of-way rules at intersections, etc. We also present diverse traffic scenarios corresponding to rainy weather, nighttime driving, driving in rural areas with unmarked roads, and high-density traffic scenarios. We use our novel dataset to evaluate the performance of object detection and behavior prediction algorithms. We show that state-of-the-art object detectors fail in these challenging conditions and also propose a new benchmark test: action-behavior prediction with a baseline mAP score of 70.74.


Improved Speech Emotion Recognition using Transfer Learning and Spectrogram Augmentation

arXiv.org Artificial Intelligence

Automatic speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction. One of the main challenges in SER is data scarcity, i.e., insufficient amounts of carefully labeled data to build and fully explore complex deep learning models for emotion classification. This paper aims to address this challenge using a transfer learning strategy combined with spectrogram augmentation. Specifically, we propose a transfer learning approach that leverages a pre-trained residual network (ResNet) model including a statistics pooling layer from speaker recognition trained using large amounts of speaker-labeled data. The statistics pooling layer enables the model to efficiently process variable-length input, thereby eliminating the need for sequence truncation which is commonly used in SER systems. In addition, we adopt a spectrogram augmentation technique to generate additional training data samples by applying random time-frequency masks to log-mel spectrograms to mitigate overfitting and improve the generalization of emotion recognition models. We evaluate the effectiveness of our proposed approach on the interactive emotional dyadic motion capture (IEMOCAP) dataset. Experimental results indicate that the transfer learning and spectrogram augmentation approaches improve the SER performance, and when combined achieve state-of-the-art results.


XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision Trees

arXiv.org Artificial Intelligence

We present a novel sensor-based learning navigation algorithm to compute a collision-free trajectory for a robot in dense and dynamic environments with moving obstacles or targets. Our approach uses deep reinforcement learning-based expert policy that is trained using a sim2real paradigm. In order to increase the reliability and handle the failure cases of the expert policy, we combine with a policy extraction technique to transform the resulting policy into a decision tree format. The resulting decision tree has properties which we use to analyze and modify the policy and improve performance on navigation metrics including smoothness, frequency of oscillation, frequency of immobilization, and obstruction of target. We are able to modify the policy to address these imperfections without retraining, combining the learning power of deep learning with the control of domain-specific algorithms. We highlight the benefits of our algorithm in simulated environments and navigating a Clearpath Jackal robot among moving pedestrians.


Affect2MM: Affective Analysis of Multimedia Content Using Emotion Causality

arXiv.org Artificial Intelligence

We present Affect2MM, a learning method for time-series emotion prediction for multimedia content. Our goal is to automatically capture the varying emotions depicted by characters in real-life human-centric situations and behaviors. We use the ideas from emotion causation theories to computationally model and determine the emotional state evoked in clips of movies. Affect2MM explicitly models the temporal causality using attention-based methods and Granger causality. We use a variety of components like facial features of actors involved, scene understanding, visual aesthetics, action/situation description, and movie script to obtain an affective-rich representation to understand and perceive the scene. We use an LSTM-based learning model for emotion perception. To evaluate our method, we analyze and compare our performance on three datasets, SENDv1, MovieGraphs, and the LIRIS-ACCEDE dataset, and observe an average of 10-15% increase in the performance over SOTA methods for all three datasets.


Dynamic Graph Modeling of Simultaneous EEG and Eye-tracking Data for Reading Task Identification

arXiv.org Artificial Intelligence

We present a new approach, that we call AdaGTCN, for identifying human reader intent from Electroencephalogram~(EEG) and Eye movement~(EM) data in order to help differentiate between normal reading and task-oriented reading. Understanding the physiological aspects of the reading process~(the cognitive load and the reading intent) can help improve the quality of crowd-sourced annotated data. Our method, Adaptive Graph Temporal Convolution Network (AdaGTCN), uses an Adaptive Graph Learning Layer and Deep Neighborhood Graph Convolution Layer for identifying the reading activities using time-locked EEG sequences recorded during word-level eye-movement fixations. Adaptive Graph Learning Layer dynamically learns the spatial correlations between the EEG electrode signals while the Deep Neighborhood Graph Convolution Layer exploits temporal features from a dense graph neighborhood to establish the state of the art in reading task identification over other contemporary approaches. We compare our approach with several baselines to report an improvement of 6.29% on the ZuCo 2.0 dataset, along with extensive ablation experiments