Not enough data to create a plot.
Try a different view from the menu above.
Malach, Eran
Auto-Regressive Next-Token Predictors are Universal Learners
Malach, Eran
Large language models display remarkable capabilities in logical and mathematical reasoning, allowing them to solve complex tasks. Interestingly, these abilities emerge in networks trained on the simple task of next-token prediction. In this work, we present a theoretical framework for studying auto-regressive next-token predictors. We demonstrate that even simple models such as linear next-token predictors, trained on Chain-of-Thought (CoT) data, can approximate any function efficiently computed by a Turing machine. We introduce a new complexity measure -- length complexity -- which measures the number of intermediate tokens in a CoT sequence required to approximate some target function, and analyze the interplay between length complexity and other notions of complexity. Finally, we show experimentally that simple next-token predictors, such as linear networks and shallow Multi-Layer Perceptrons (MLPs), display non-trivial performance on text generation and arithmetic tasks. Our results demonstrate that the power of language models can be attributed, to a great extent, to the auto-regressive next-token training scheme, and not necessarily to a particular choice of architecture.
Corgi^2: A Hybrid Offline-Online Approach To Storage-Aware Data Shuffling For SGD
Livne, Etay, Kaplun, Gal, Malach, Eran, Shalev-Schwatz, Shai
When using Stochastic Gradient Descent (SGD) for training machine learning models, it is often crucial to provide the model with examples sampled at random from the dataset. However, for large datasets stored in the cloud, random access to individual examples is often costly and inefficient. A recent work \cite{corgi}, proposed an online shuffling algorithm called CorgiPile, which greatly improves efficiency of data access, at the cost some performance loss, which is particularly apparent for large datasets stored in homogeneous shards (e.g., video datasets). In this paper, we introduce a novel two-step partial data shuffling strategy for SGD which combines an offline iteration of the CorgiPile method with a subsequent online iteration. Our approach enjoys the best of both worlds: it performs similarly to SGD with random access (even for homogenous data) without compromising the data access efficiency of CorgiPile. We provide a comprehensive theoretical analysis of the convergence properties of our method and demonstrate its practical advantages through experimental results.
Less is More: Selective Layer Finetuning with SubTuning
Kaplun, Gal, Gurevich, Andrey, Swisa, Tal, David, Mazor, Shalev-Shwartz, Shai, Malach, Eran
Finetuning a pretrained model has become a standard approach for training neural networks on novel tasks, resulting in fast convergence and improved performance. In this work, we study an alternative finetuning method, where instead of finetuning all the weights of the network, we only train a carefully chosen subset of layers, keeping the rest of the weights frozen at their initial (pretrained) values. We demonstrate that \emph{subset finetuning} (or SubTuning) often achieves accuracy comparable to full finetuning of the model, and even surpasses the performance of full finetuning when training data is scarce. Therefore, SubTuning allows deploying new tasks at minimal computational cost, while enjoying the benefits of finetuning the entire model. This yields a simple and effective method for multi-task learning, where different tasks do not interfere with one another, and yet share most of the resources at inference time. We demonstrate the efficiency of SubTuning across multiple tasks, using different network architectures and pretraining methods.
Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit
Barak, Boaz, Edelman, Benjamin L., Goel, Surbhi, Kakade, Sham, Malach, Eran, Zhang, Cyril
There is mounting evidence of emergent phenomena in the capabilities of deep learning methods as we scale up datasets, model sizes, and training times. While there are some accounts of how these resources modulate statistical capacity, far less is known about their effect on the computational problem of model training. This work conducts such an exploration through the lens of learning a $k$-sparse parity of $n$ bits, a canonical discrete search problem which is statistically easy but computationally hard. Empirically, we find that a variety of neural networks successfully learn sparse parities, with discontinuous phase transitions in the training curves. On small instances, learning abruptly occurs at approximately $n^{O(k)}$ iterations; this nearly matches SQ lower bounds, despite the apparent lack of a sparse prior. Our theoretical analysis shows that these observations are not explained by a Langevin-like mechanism, whereby SGD "stumbles in the dark" until it finds the hidden set of features (a natural algorithm which also runs in $n^{O(k)}$ time). Instead, we show that SGD gradually amplifies the sparse solution via a Fourier gap in the population gradient, making continual progress that is invisible to loss and error metrics.
On the Power of Differentiable Learning versus PAC and SQ Learning
Abbe, Emmanuel, Kamath, Pritish, Malach, Eran, Sandon, Colin, Srebro, Nathan
We study the power of learning via mini-batch stochastic gradient descent (SGD) on the population loss, and batch Gradient Descent (GD) on the empirical loss, of a differentiable model or neural network, and ask what learning problems can be learnt using these paradigms. We show that SGD and GD can always simulate learning with statistical queries (SQ), but their ability to go beyond that depends on the precision $\rho$ of the gradient calculations relative to the minibatch size $b$ (for SGD) and sample size $m$ (for GD). With fine enough precision relative to minibatch size, namely when $b \rho$ is small enough, SGD can go beyond SQ learning and simulate any sample-based learning algorithm and thus its learning power is equivalent to that of PAC learning; this extends prior work that achieved this result for $b=1$. Similarly, with fine enough precision relative to the sample size $m$, GD can also simulate any sample-based learning algorithm based on $m$ samples. In particular, with polynomially many bits of precision (i.e. when $\rho$ is exponentially small), SGD and GD can both simulate PAC learning regardless of the mini-batch size. On the other hand, when $b \rho^2$ is large enough, the power of SGD is equivalent to that of SQ learning.
Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels
Malach, Eran, Kamath, Pritish, Abbe, Emmanuel, Srebro, Nathan
We study the relative power of learning with gradient descent on differentiable models, such as neural networks, versus using the corresponding tangent kernels. We show that under certain conditions, gradient descent achieves small error only if a related tangent kernel method achieves a non-trivial advantage over random guessing (a.k.a. weak learning), though this advantage might be very small even when gradient descent can achieve arbitrarily high accuracy. Complementing this, we show that without these conditions, gradient descent can in fact learn with small error even when no kernel method, in particular using the tangent kernel, can achieve a non-trivial advantage over random guessing.
The Connection Between Approximation, Depth Separation and Learnability in Neural Networks
Malach, Eran, Yehudai, Gilad, Shalev-Shwartz, Shai, Shamir, Ohad
Several recent works have shown separation results between deep neural networks, and hypothesis classes with inferior approximation capacity such as shallow networks or kernel classes. On the other hand, the fact that deep networks can efficiently express a target function does not mean this target function can be learned efficiently by deep neural networks. In this work we study the intricate connection between learnability and approximation capacity. We show that learnability with deep networks of a target function depends on the ability of simpler classes to approximate the target. Specifically, we show that a necessary condition for a function to be learnable by gradient descent on deep neural networks is to be able to approximate the function, at least in a weak sense, with shallow neural networks. We also show that a class of functions can be learned by an efficient statistical query algorithm if and only if it can be approximated in a weak sense by some kernel class. We give several examples of functions which demonstrate depth separation, and conclude that they cannot be efficiently learned, even by a hypothesis class that can efficiently approximate them.
Computational Separation Between Convolutional and Fully-Connected Networks
Malach, Eran, Shalev-Shwartz, Shai
However, the advantage of using convolutional networks over fully-connected networks is not understood from a theoretical perspective. In this work, we show how convolutional networks can leverage locality in the data, and thus achieve a computational advantage over fully-connected networks. Specifically, we show a class of problems that can be efficiently solved using convolutional networks trained with gradient-descent, but at the same time is hard to learn using a polynomial-size fully-connected network. Convolutional neural networks (LeCun et al., 1998; Krizhevsky et al., 2012) achieve state-of-the-art performance on every possible task in computer vision. However, while the empirical success of convolutional networks is indisputable, the advantage of using them is not well understood from a theoretical perspective.
When Hardness of Approximation Meets Hardness of Learning
Malach, Eran, Shalev-Shwartz, Shai
A supervised learning algorithm has access to a distribution of labeled examples, and needs to return a function (hypothesis) that correctly labels the examples. The hypothesis of the learner is taken from some fixed class of functions (e.g., linear classifiers, neural networks etc.). A failure of the learning algorithm can occur due to two possible reasons: wrong choice of hypothesis class (hardness of approximation), or failure to find the best function within the hypothesis class (hardness of learning). Although both approximation and learnability are important for the success of the algorithm, they are typically studied separately. In this work, we show a single hardness property that implies both hardness of approximation using linear classes and shallow networks, and hardness of learning using correlation queries and gradient-descent. This allows us to obtain new results on hardness of approximation and learnability of parity functions, DNF formulas and $AC^0$ circuits.
Learning Parities with Neural Networks
Daniely, Amit, Malach, Eran
In recent years we see a rapidly growing line of research which shows learnability of various models via common neural network algorithms. Yet, besides a very few outliers, these results show learnability of models that can be learned using linear methods. Namely, such results show that learning neural-networks with gradient-descent is competitive with learning a linear classifier on top of a data-independent representation of the examples. This leaves much to be desired, as neural networks are far more successful than linear methods. Furthermore, on the more conceptual level, linear models don't seem to capture the ``deepness" of deep networks. In this paper we make a step towards showing leanability of models that are inherently non-linear. We show that under certain distributions, sparse parities are learnable via gradient decent on depth-two network. On the other hand, under the same distributions, these parities cannot be learned efficiently by linear methods.