Goto

Collaborating Authors

 Majumdar, Anirudha


PAC-Bayes Control: Synthesizing Controllers that Provably Generalize to Novel Environments

arXiv.org Artificial Intelligence

Our goal is to synthesize controllers for robots that provably generalize well to novel environments given a dataset of example environments. The key technical idea behind our approach is to leverage tools from generalization theory in machine learning by exploiting a precise analogy (which we present in the form of a reduction) between robustness of controllers to novel environments and generalization of hypotheses in supervised learning. In particular, we utilize the Probably Approximately Correct (PAC)-Bayes framework, which allows us to obtain upper bounds (that hold with high probability) on the expected cost of (stochastic) controllers across novel environments. We propose control synthesis algorithms that explicitly seek to minimize this upper bound. The corresponding optimization problem can be solved using convex optimization (Relative Entropy Programming in particular) in the setting where we are optimizing over a finite control policy space. In the more general setting of continuously parameterized controllers, we minimize this upper bound using stochastic gradient descent. We present examples of our approach in the context of obstacle avoidance control with depth measurements. Our simulated examples demonstrate the potential of our approach to provide strong generalization guarantees on controllers for robotic systems with continuous state and action spaces, complicated (e.g., nonlinear) dynamics, and rich sensory inputs (e.g., depth measurements).


DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization

arXiv.org Machine Learning

In recent years, optimization theory has been greatly impacted by the advent of sum of squares (SOS) optimization. The reliance of this technique on large-scale semidefinite programs however, has limited the scale of problems to which it can be applied. In this paper, we introduce DSOS and SDSOS optimization as more tractable alternatives to sum of squares optimization that rely instead on linear and second order cone programs respectively. These are optimization problems over certain subsets of sum of squares polynomials (or equivalently subsets of positive semidefinite matrices), which can be of interest in general applications of semidefinite programming where scalability is a limitation. We show that some basic theorems from SOS optimization which rely on results from real algebraic geometry are still valid for DSOS and SDSOS optimization. Furthermore, we show with numerical experiments from diverse application areas---polynomial optimization, statistics and machine learning, derivative pricing, and control theory---that with reasonable tradeoffs in accuracy, we can handle problems at scales that are currently far beyond the reach of sum of squares approaches. Finally, we provide a review of recent techniques that bridge the gap between our DSOS/SDSOS approach and the SOS approach at the expense of additional running time. The appendix of the paper introduces an accompanying MATLAB package for DSOS and SDSOS optimization.


Response to "Counterexample to global convergence of DSOS and SDSOS hierarchies"

arXiv.org Machine Learning

In a recent note [8], the author provides a counterexample to the global convergence of what his work refers to as "the DSOS and SDSOS hierarchies" for polynomial optimization problems (POPs) and purports that this refutes claims in our extended abstract [4] and slides in [3]. The goal of this paper is to clarify that neither [4], nor [3], and certainly not our full paper [5], ever defined DSOS or SDSOS hierarchies as it is done in [8]. It goes without saying that no claims about convergence properties of the hierarchies in [8] were ever made as a consequence. What was stated in [4,3] was completely different: we stated that there exist hierarchies based on DSOS and SDSOS optimization that converge. This is indeed true as we discuss in this response. We also emphasize that we were well aware that some (S)DSOS hierarchies do not converge even if their natural SOS counterparts do. This is readily implied by an example in our prior work [5], which makes the counterexample in [8] superfluous. Finally, we provide concrete counterarguments to claims made in [8] that aim to challenge the scalability improvements obtained by DSOS and SDSOS optimization as compared to sum of squares (SOS) optimization. [3] A. A. Ahmadi and A. Majumdar. DSOS and SDSOS: More tractable alternatives to SOS. Slides at the meeting on Geometry and Algebra of Linear Matrix Inequalities, CIRM, Marseille, 2013. [4] A. A. Ahmadi and A. Majumdar. DSOS and SDSOS optimization: LP and SOCP-based alternatives to sum of squares optimization. In proceedings of the 48th annual IEEE Conference on Information Sciences and Systems, 2014. [5] A. A. Ahmadi and A. Majumdar. DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization. arXiv:1706.02586, 2017. [8] C. Josz. Counterexample to global convergence of DSOS and SDSOS hierarchies. arXiv:1707.02964, 2017.