Plotting

 Madras, David


Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer

Neural Information Processing Systems

In many machine learning applications, there are multiple decision-makers involved, both automated and human. The interaction between these agents often goes unaddressed in algorithmic development. In this work, we explore a simple version of this interaction with a two-stage framework containing an automated model and an external decision-maker. The model can choose to say PASS, and pass the decision downstream, as explored in rejection learning. We extend this concept by proposing "learning to defer", which generalizes rejection learning by considering the effect of other agents in the decision-making process. We propose a learning algorithm which accounts for potential biases held by external decision-makers in a system. Experiments demonstrate that learning to defer can make systems not only more accurate but also less biased. Even when working with inconsistent or biased users, we show that deferring models still greatly improve the accuracy and/or fairness of the entire system.


Fairness Through Causal Awareness: Learning Latent-Variable Models for Biased Data

arXiv.org Machine Learning

How do we learn from biased data? Historical datasets often reflect historical prejudices; sensitive or protected attributes may affect the observed treatments and outcomes. Classification algorithms tasked with predicting outcomes accurately from these datasets tend to replicate these biases. We advocate a causal modeling approach to learning from biased data and reframe fair classification as an intervention problem. We propose a causal model in which the sensitive attribute confounds both the treatment and the outcome. Building on prior work in deep learning and generative modeling, we describe how to learn the parameters of this causal model from observational data alone, even in the presence of unobserved confounders. We show experimentally that fairness-aware causal modeling provides better estimates of the causal effects between the sensitive attribute, the treatment, and the outcome. We further present evidence that estimating these causal effects can help us to learn policies which are both more accurate and fair, when presented with a historically biased dataset.


Predict Responsibly: Increasing Fairness by Learning To Defer

arXiv.org Machine Learning

In many high-stakes ML applications, there are multiple decision-makers involved, both automated and human. The interaction between these agents often goes unaddressed in algorithmic development. In this work, we explore a simple version of this interaction with a two-stage framework containing an automated model and an external decision-maker. The model can choose to say IDK, and pass the decision downstream, as explored in rejection learning. We extend this concept by proposing learning to defer, which generalizes the rejection learning framework by considering the effect of the other agents in the decision-making process. We propose a learning algorithm which accounts for potential biases held by external decision-makers in a system. Experiments on real-world datasets demonstrate that learning to defer can make a system not only more accurate but also less biased. Even when operated by highly biased users, we show that deferring models can still greatly improve the fairness of the entire system.


Learning Adversarially Fair and Transferable Representations

arXiv.org Machine Learning

In this work, we advocate for representation learning as the key to mitigating unfair prediction outcomes downstream. We envision a scenario where learned representations may be handed off to other entities with unknown objectives. We propose and explore adversarial representation learning as a natural method of ensuring those entities will act fairly, and connect group fairness (demographic parity, equalized odds, and equal opportunity) to different adversarial objectives. Through worst-case theoretical guarantees and experimental validation, we show that the choice of this objective is crucial to fair prediction. Furthermore, we present the first in-depth experimental demonstration of fair transfer learning, by showing that our learned representations admit fair predictions on new tasks while maintaining utility, an essential goal of fair representation learning.


Change-point Detection Methods for Body-Worn Video

arXiv.org Machine Learning

Body-worn video (BWV) cameras are increasingly utilized by police departments to provide a record of police-public interactions. However, large-scale BWV deployment produces terabytes of data per week, necessitating the development of effective computational methods to identify salient changes in video. In work carried out at the 2016 RIPS program at IPAM, UCLA, we present a novel two-stage framework for video change-point detection. First, we employ state-of-the-art machine learning methods including convolutional neural networks and support vector machines for scene classification. We then develop and compare change-point detection algorithms utilizing mean squared-error minimization, forecasting methods, hidden Markov models, and maximum likelihood estimation to identify noteworthy changes. We test our framework on detection of vehicle exits and entrances in a BWV data set provided by the Los Angeles Police Department and achieve over 90% recall and nearly 70% precision -- demonstrating robustness to rapid scene changes, extreme luminance differences, and frequent camera occlusions.