Madireddy, Sandeep
A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems
Baker, Megan M., New, Alexander, Aguilar-Simon, Mario, Al-Halah, Ziad, Arnold, Sébastien M. R., Ben-Iwhiwhu, Ese, Brna, Andrew P., Brooks, Ethan, Brown, Ryan C., Daniels, Zachary, Daram, Anurag, Delattre, Fabien, Dellana, Ryan, Eaton, Eric, Fu, Haotian, Grauman, Kristen, Hostetler, Jesse, Iqbal, Shariq, Kent, Cassandra, Ketz, Nicholas, Kolouri, Soheil, Konidaris, George, Kudithipudi, Dhireesha, Learned-Miller, Erik, Lee, Seungwon, Littman, Michael L., Madireddy, Sandeep, Mendez, Jorge A., Nguyen, Eric Q., Piatko, Christine D., Pilly, Praveen K., Raghavan, Aswin, Rahman, Abrar, Ramakrishnan, Santhosh Kumar, Ratzlaff, Neale, Soltoggio, Andrea, Stone, Peter, Sur, Indranil, Tang, Zhipeng, Tiwari, Saket, Vedder, Kyle, Wang, Felix, Xu, Zifan, Yanguas-Gil, Angel, Yedidsion, Harel, Yu, Shangqun, Vallabha, Gautam K.
Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.
General policy mapping: online continual reinforcement learning inspired on the insect brain
Yanguas-Gil, Angel, Madireddy, Sandeep
We have developed a model for online continual or lifelong reinforcement learning (RL) inspired on the insect brain. Our model leverages the offline training of a feature extraction and a common general policy layer to enable the convergence of RL algorithms in online settings. Sharing a common policy layer across tasks leads to positive backward transfer, where the agent continuously improved in older tasks sharing the same underlying general policy. Biologically inspired restrictions to the agent's network are key for the convergence of RL algorithms. This provides a pathway towards efficient online RL in resource-constrained scenarios.
Sequential Bayesian Neural Subnetwork Ensembles
Jantre, Sanket, Madireddy, Sandeep, Bhattacharya, Shrijita, Maiti, Tapabrata, Balaprakash, Prasanna
Deep neural network ensembles that appeal to model diversity have been used successfully to improve predictive performance and model robustness in several applications. Whereas, it has recently been shown that sparse subnetworks of dense models can match the performance of their dense counterparts and increase their robustness while effectively decreasing the model complexity. However, most ensembling techniques require multiple parallel and costly evaluations and have been proposed primarily with deterministic models, whereas sparsity induction has been mostly done through ad-hoc pruning. We propose sequential ensembling of dynamic Bayesian neural subnetworks that systematically reduce model complexity through sparsity-inducing priors and generate diverse ensembles in a single forward pass of the model. The ensembling strategy consists of an exploration phase that finds high-performing regions of the parameter space and multiple exploitation phases that effectively exploit the compactness of the sparse model to quickly converge to different minima in the energy landscape corresponding to high-performing subnetworks yielding diverse ensembles. We empirically demonstrate that our proposed approach surpasses the baselines of the dense frequentist and Bayesian ensemble models in prediction accuracy, uncertainty estimation, and out-of-distribution (OoD) robustness on CIFAR10, CIFAR100 datasets, and their out-of-distribution variants: CIFAR10-C, CIFAR100-C induced by corruptions. Furthermore, we found that our approach produced the most diverse ensembles compared to the approaches with a single forward pass and even compared to the approaches with multiple forward passes in some cases.
DeepAdversaries: Examining the Robustness of Deep Learning Models for Galaxy Morphology Classification
Ćiprijanović, Aleksandra, Kafkes, Diana, Snyder, Gregory, Sánchez, F. Javier, Perdue, Gabriel Nathan, Pedro, Kevin, Nord, Brian, Madireddy, Sandeep, Wild, Stefan M.
Data processing and analysis pipelines in cosmological survey experiments introduce data perturbations that can significantly degrade the performance of deep learning-based models. Given the increased adoption of supervised deep learning methods for processing and analysis of cosmological survey data, the assessment of data perturbation effects and the development of methods that increase model robustness are increasingly important. In the context of morphological classification of galaxies, we study the effects of perturbations in imaging data. In particular, we examine the consequences of using neural networks when training on baseline data and testing on perturbed data. We consider perturbations associated with two primary sources: 1) increased observational noise as represented by higher levels of Poisson noise and 2) data processing noise incurred by steps such as image compression or telescope errors as represented by one-pixel adversarial attacks. We also test the efficacy of domain adaptation techniques in mitigating the perturbation-driven errors. We use classification accuracy, latent space visualizations, and latent space distance to assess model robustness. Without domain adaptation, we find that processing pixel-level errors easily flip the classification into an incorrect class and that higher observational noise makes the model trained on low-noise data unable to classify galaxy morphologies. On the other hand, we show that training with domain adaptation improves model robustness and mitigates the effects of these perturbations, improving the classification accuracy by 23% on data with higher observational noise. Domain adaptation also increases by a factor of ~2.3 the latent space distance between the baseline and the incorrectly classified one-pixel perturbed image, making the model more robust to inadvertent perturbations.
Applications and Techniques for Fast Machine Learning in Science
Deiana, Allison McCarn, Tran, Nhan, Agar, Joshua, Blott, Michaela, Di Guglielmo, Giuseppe, Duarte, Javier, Harris, Philip, Hauck, Scott, Liu, Mia, Neubauer, Mark S., Ngadiuba, Jennifer, Ogrenci-Memik, Seda, Pierini, Maurizio, Aarrestad, Thea, Bahr, Steffen, Becker, Jurgen, Berthold, Anne-Sophie, Bonventre, Richard J., Bravo, Tomas E. Muller, Diefenthaler, Markus, Dong, Zhen, Fritzsche, Nick, Gholami, Amir, Govorkova, Ekaterina, Hazelwood, Kyle J, Herwig, Christian, Khan, Babar, Kim, Sehoon, Klijnsma, Thomas, Liu, Yaling, Lo, Kin Ho, Nguyen, Tri, Pezzullo, Gianantonio, Rasoulinezhad, Seyedramin, Rivera, Ryan A., Scholberg, Kate, Selig, Justin, Sen, Sougata, Strukov, Dmitri, Tang, William, Thais, Savannah, Unger, Kai Lukas, Vilalta, Ricardo, Krosigk, Belinavon, Warburton, Thomas K., Flechas, Maria Acosta, Aportela, Anthony, Calvet, Thomas, Cristella, Leonardo, Diaz, Daniel, Doglioni, Caterina, Galati, Maria Domenica, Khoda, Elham E, Fahim, Farah, Giri, Davide, Hawks, Benjamin, Hoang, Duc, Holzman, Burt, Hsu, Shih-Chieh, Jindariani, Sergo, Johnson, Iris, Kansal, Raghav, Kastner, Ryan, Katsavounidis, Erik, Krupa, Jeffrey, Li, Pan, Madireddy, Sandeep, Marx, Ethan, McCormack, Patrick, Meza, Andres, Mitrevski, Jovan, Mohammed, Mohammed Attia, Mokhtar, Farouk, Moreno, Eric, Nagu, Srishti, Narayan, Rohin, Palladino, Noah, Que, Zhiqiang, Park, Sang Eon, Ramamoorthy, Subramanian, Rankin, Dylan, Rothman, Simon, Sharma, Ashish, Summers, Sioni, Vischia, Pietro, Vlimant, Jean-Roch, Weng, Olivia
In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.
Multilayer Neuromodulated Architectures for Memory-Constrained Online Continual Learning
Madireddy, Sandeep, Yanguas-Gil, Angel, Balaprakash, Prasanna
We focus on the problem of how to achieve online continual learning under memory-constrained conditions where the input data may not be known a priori. These constraints are relevant in edge computing scenarios. We have developed an architecture where input processing over data streams and online learning are integrated in a single recurrent network architecture. This allows us to cast metalearning optimization as a mixed-integer optimization problem, where different synaptic plasticity algorithms and feature extraction layers can be swapped out and their hyperparameters are optimized to identify optimal architectures for different sets of tasks. We utilize a Bayesian optimization method to search over a design space that spans multiple learning algorithms, their specific hyperparameters, and feature extraction layers. We demonstrate our approach for online non-incremental and class-incremental learning tasks. Our optimization algorithm finds configurations that achieve superior continual learning performance on Split-MNIST and Permuted-MNIST data as compared with other memory-constrained learning approaches, and it matches that of the state-of-the-art memory replay-based approaches without explicit data storage and replay. Our approach allows us to explore the transferability of optimal learning conditions to tasks and datasets that have not been previously seen. We demonstrate that the accuracy of our transfer metalearning across datasets can be largely explained through a transfer coefficient that can be based on metrics of dimensionality and distance between datasets.
Using recurrent neural networks for nonlinear component computation in advection-dominated reduced-order models
Maulik, Romit, Rao, Vishwas, Madireddy, Sandeep, Lusch, Bethany, Balaprakash, Prasanna
Rapid simulations of advection-dominated problems are vital for multiple engineering and geophysical applications. In this paper, we present a long short-term memory neural network to approximate the nonlinear component of the reduced-order model (ROM) of an advection-dominated partial differential equation. This is motivated by the fact that the nonlinear term is the most expensive component of a successful ROM. For our approach, we utilize a Galerkin projection to isolate the linear and the transient components of the dynamical system and then use discrete empirical interpolation to generate training data for supervised learning. We note that the numerical time-advancement and linear-term computation of the system ensures a greater preservation of physics than does a process that is fully modeled. Our results show that the proposed framework recovers transient dynamics accurately without nonlinear term computations in full-order space and represents a cost-effective alternative to solely equation-based ROMs.
Neuromorphic Architecture Optimization for Task-Specific Dynamic Learning
Madireddy, Sandeep, Yanguas-Gil, Angel, Balaprakash, Prasanna
The ability to learn and adapt in real time is a central feature of biological systems. Neuromorphic architectures demonstrating such versatility can greatly enhance our ability to efficiently process information at the edge. A key challenge, however, is to understand which learning rules are best suited for specific tasks and how the relevant hyperparameters can be fine-tuned. In this work, we introduce a conceptual framework in which the learning process is integrated into the network itself. This allows us to cast meta-learning as a mathematical optimization problem. We employ DeepHyper, a scalable, asynchronous model-based search, to simultaneously optimize the choice of meta-learning rules and their hyperparameters. We demonstrate our approach with two different datasets, MNIST and FashionMNIST, using a network architecture inspired by the learning center of the insect brain. Our results show that optimal learning rules can be dataset-dependent even within similar tasks. This dependency demonstrates the importance of introducing versatility and flexibility in the learning algorithms. It also illuminates experimental findings in insect neuroscience that have shown a heterogeneity of learning rules within the insect mushroom body.