Goto

Collaborating Authors

 Ma, Zejun


Mega-TTS: Zero-Shot Text-to-Speech at Scale with Intrinsic Inductive Bias

arXiv.org Artificial Intelligence

Scaling text-to-speech to a large and wild dataset has been proven to be highly effective in achieving timbre and speech style generalization, particularly in zero-shot TTS. However, previous works usually encode speech into latent using audio codec and use autoregressive language models or diffusion models to generate it, which ignores the intrinsic nature of speech and may lead to inferior or uncontrollable results. We argue that speech can be decomposed into several attributes (e.g., content, timbre, prosody, and phase) and each of them should be modeled using a module with appropriate inductive biases. From this perspective, we carefully design a novel and large zero-shot TTS system called Mega-TTS, which is trained with large-scale wild data and models different attributes in different ways: 1) Instead of using latent encoded by audio codec as the intermediate feature, we still choose spectrogram as it separates the phase and other attributes very well. Phase can be appropriately constructed by the GAN-based vocoder and does not need to be modeled by the language model. 2) We model the timbre using global vectors since timbre is a global attribute that changes slowly over time. 3) We further use a VQGAN-based acoustic model to generate the spectrogram and a latent code language model to fit the distribution of prosody, since prosody changes quickly over time in a sentence, and language models can capture both local and long-range dependencies. We scale Mega-TTS to multi-domain datasets with 20K hours of speech and evaluate its performance on unseen speakers. Experimental results demonstrate that Mega-TTS surpasses state-of-the-art TTS systems on zero-shot TTS, speech editing, and cross-lingual TTS tasks, with superior naturalness, robustness, and speaker similarity due to the proper inductive bias of each module. Audio samples are available at https://mega-tts.github.io/demo-page.


Make-An-Audio 2: Temporal-Enhanced Text-to-Audio Generation

arXiv.org Artificial Intelligence

Large diffusion models have been successful in text-to-audio (T2A) synthesis tasks, but they often suffer from common issues such as semantic misalignment and poor temporal consistency due to limited natural language understanding and data scarcity. Additionally, 2D spatial structures widely used in T2A works lead to unsatisfactory audio quality when generating variable-length audio samples since they do not adequately prioritize temporal information. To address these challenges, we propose Make-an-Audio 2, a latent diffusion-based T2A method that builds on the success of Make-an-Audio. Our approach includes several techniques to improve semantic alignment and temporal consistency: Firstly, we use pre-trained large language models (LLMs) to parse the text into structured pairs for better temporal information capture. We also introduce another structured-text encoder to aid in learning semantic alignment during the diffusion denoising process. To improve the performance of variable length generation and enhance the temporal information extraction, we design a feed-forward Transformer-based diffusion denoiser. Finally, we use LLMs to augment and transform a large amount of audio-label data into audio-text datasets to alleviate the problem of scarcity of temporal data. Extensive experiments show that our method outperforms baseline models in both objective and subjective metrics, and achieves significant gains in temporal information understanding, semantic consistency, and sound quality.


CIF-PT: Bridging Speech and Text Representations for Spoken Language Understanding via Continuous Integrate-and-Fire Pre-Training

arXiv.org Artificial Intelligence

Speech or text representation generated by pre-trained models contains modal-specific information that could be combined for benefiting spoken language understanding (SLU) tasks. In this work, we propose a novel pre-training paradigm termed Continuous Integrate-and-Fire Pre-Training (CIF-PT). It relies on a simple but effective frame-to-token alignment: continuous integrate-and-fire (CIF) to bridge the representations between speech and text. It jointly performs speech-to-text training and language model distillation through CIF as the pre-training (PT). Evaluated on SLU benchmark SLURP dataset, CIF-PT outperforms the state-of-the-art model by 1.94% of accuracy and 2.71% of SLU-F1 on the tasks of intent classification and slot filling, respectively. We also observe the cross-modal representation extracted by CIF-PT obtains better performance than other neural interfaces for the tasks of SLU, including the dominant speech representation learned from self-supervised pre-training.


Random Utterance Concatenation Based Data Augmentation for Improving Short-video Speech Recognition

arXiv.org Artificial Intelligence

One of limitations in end-to-end automatic speech recognition (ASR) framework is its performance would be compromised if train-test utterance lengths are mismatched. In this paper, we propose an on-the-fly random utterance concatenation (RUC) based data augmentation method to alleviate train-test utterance length mismatch issue for short-video ASR task. Specifically, we are motivated by observations that our human-transcribed training utterances tend to be much shorter for short-video spontaneous speech (~3 seconds on average), while our test utterance generated from voice activity detection front-end is much longer (~10 seconds on average). Such a mismatch can lead to suboptimal performance. Empirically, it's observed the proposed RUC method significantly improves long utterance recognition without performance drop on short one. Overall, it achieves 5.72% word error rate reduction on average for 15 languages and improved robustness to various utterance length.


Phonetic and Prosody-aware Self-supervised Learning Approach for Non-native Fluency Scoring

arXiv.org Artificial Intelligence

Speech fluency/disfluency can be evaluated by analyzing a range of phonetic and prosodic features. Deep neural networks are commonly trained to map fluency-related features into the human scores. However, the effectiveness of deep learning-based models is constrained by the limited amount of labeled training samples. To address this, we introduce a self-supervised learning (SSL) approach that takes into account phonetic and prosody awareness for fluency scoring. Specifically, we first pre-train the model using a reconstruction loss function, by masking phones and their durations jointly on a large amount of unlabeled speech and text prompts. We then fine-tune the pre-trained model using human-annotated scoring data. Our experimental results, conducted on datasets such as Speechocean762 and our non-native datasets, show that our proposed method outperforms the baseline systems in terms of Pearson correlation coefficients (PCC). Moreover, we also conduct an ablation study to better understand the contribution of phonetic and prosody factors during the pre-training stage.


Unleashing Infinite-Length Input Capacity for Large-scale Language Models with Self-Controlled Memory System

arXiv.org Artificial Intelligence

Large-scale Language Models (LLMs) are constrained by their inability to process lengthy inputs. To address this limitation, we propose the Self-Controlled Memory (SCM) system to unleash infinite-length input capacity for large-scale language models. Our SCM system is composed of three key modules: the language model agent, the memory stream, and the memory controller. The language model agent iteratively processes ultra-long inputs and stores all historical information in the memory stream. The memory controller provides the agent with both long-term memory (archived memory) and short-term memory (flash memory) to generate precise and coherent responses. The controller determines which memories from archived memory should be activated and how to incorporate them into the model input. Our SCM system can be integrated with any LLMs to enable them to process ultra-long texts without any modification or fine-tuning. Experimental results show that our SCM system enables LLMs, which are not optimized for multi-turn dialogue, to achieve multi-turn dialogue capabilities that are comparable to ChatGPT, and to outperform ChatGPT in scenarios involving ultra-long document summarization or long-term conversations. Additionally, we will supply a test set, which covers common long-text input scenarios, for evaluating the abilities of LLMs in processing long documents.~\footnote{Working in progress.}\footnote{\url{https://github.com/wbbeyourself/SCM4LLMs}}


Internal Language Model Estimation based Adaptive Language Model Fusion for Domain Adaptation

arXiv.org Artificial Intelligence

ASR model deployment environment is ever-changing, and the incoming speech can be switched across different domains during a session. This brings a challenge for effective domain adaptation when only target domain text data is available, and our objective is to obtain obviously improved performance on the target domain while the performance on the general domain is less undermined. In this paper, we propose an adaptive LM fusion approach called internal language model estimation based adaptive domain adaptation (ILME-ADA). To realize such an ILME-ADA, an interpolated log-likelihood score is calculated based on the maximum of the scores from the internal LM and the external LM (ELM) respectively. We demonstrate the efficacy of the proposed ILME-ADA method with both RNN-T and LAS modeling frameworks employing neural network and n-gram LMs as ELMs respectively on two domain specific (target) test sets. The proposed method can achieve significantly better performance on the target test sets while it gets minimal performance degradation on the general test set, compared with both shallow and ILME-based LM fusion methods.


LiteG2P: A fast, light and high accuracy model for grapheme-to-phoneme conversion

arXiv.org Artificial Intelligence

As a key component of automated speech recognition (ASR) and the front-end in text-to-speech (TTS), grapheme-to-phoneme (G2P) plays the role of converting letters to their corresponding pronunciations. Existing methods are either slow or poor in performance, and are limited in application scenarios, particularly in the process of on-device inference. In this paper, we integrate the advantages of both expert knowledge and connectionist temporal classification (CTC) based neural network and propose a novel method named LiteG2P which is fast, light and theoretically parallel. With the carefully leading design, LiteG2P can be applied both on cloud and on device. Experimental results on the CMU dataset show that the performance of the proposed method is superior to the state-of-the-art CTC based method with 10 times fewer parameters, and even comparable to the state-of-the-art Transformer-based sequence-to-sequence model with less parameters and 33 times less computation.


BiFSMNv2: Pushing Binary Neural Networks for Keyword Spotting to Real-Network Performance

arXiv.org Artificial Intelligence

Deep neural networks, such as the Deep-FSMN, have been widely studied for keyword spotting (KWS) applications while suffering expensive computation and storage. Therefore, network compression technologies like binarization are studied to deploy KWS models on edge. In this paper, we present a strong yet efficient binary neural network for KWS, namely BiFSMNv2, pushing it to the real-network accuracy performance. First, we present a Dual-scale Thinnable 1-bit-Architecture to recover the representation capability of the binarized computation units by dual-scale activation binarization and liberate the speedup potential from an overall architecture perspective. Second, we also construct a Frequency Independent Distillation scheme for KWS binarization-aware training, which distills the high and low-frequency components independently to mitigate the information mismatch between full-precision and binarized representations. Moreover, we propose the Learning Propagation Binarizer, a general and efficient binarizer that enables the forward and backward propagation of binary KWS networks to be continuously improved through learning. We implement and deploy the BiFSMNv2 on ARMv8 real-world hardware with a novel Fast Bitwise Computation Kernel, which is proposed to fully utilize registers and increase instruction throughput. Comprehensive experiments show our BiFSMNv2 outperforms existing binary networks for KWS by convincing margins across different datasets and achieves comparable accuracy with the full-precision networks (only a tiny 1.51% drop on Speech Commands V1-12). We highlight that benefiting from the compact architecture and optimized hardware kernel, BiFSMNv2 can achieve an impressive 25.1x speedup and 20.2x storage-saving on edge hardware.


Direct Speech-to-speech Translation without Textual Annotation using Bottleneck Features

arXiv.org Artificial Intelligence

Speech-to-speech translation directly translates a speech utterance to another between different languages, and has great potential in tasks such as simultaneous interpretation. State-of-art models usually contains an auxiliary module for phoneme sequences prediction, and this requires textual annotation of the training dataset. We propose a direct speech-to-speech translation model which can be trained without any textual annotation or content information. Instead of introducing an auxiliary phoneme prediction task in the model, we propose to use bottleneck features as intermediate training objectives for our model to ensure the translation performance of the system. Experiments on Mandarin-Cantonese speech translation demonstrate the feasibility of the proposed approach and the performance can match a cascaded system with respect of translation and synthesis qualities.