Not enough data to create a plot.
Try a different view from the menu above.
Ma, Yunpu
xERTE: Explainable Reasoning on Temporal Knowledge Graphs for Forecasting Future Links
Han, Zhen, Chen, Peng, Ma, Yunpu, Tresp, Volker
Interest has been rising lately towards modeling time-evolving knowledge graphs (KGs). Recently, graph representation learning approaches have become the dominant paradigm for link prediction on temporal KGs. However, the embeddingbased approaches largely operate in a black-box fashion, lacking the ability to judge the results' reliability. This paper provides a future link forecasting framework that reasons over query-relevant subgraphs of temporal KGs and jointly models the graph structures and the temporal context information. Especially, we propose a temporal relational attention mechanism and a novel reverse representation update scheme to guide the extraction of an enclosing subgraph around the query. The subgraph is expanded by an iterative sampling of temporal neighbors and attention propagation. As a result, our approach provides humanunderstandable arguments for the prediction. We evaluate our model on four benchmark temporal knowledge graphs for the link forecasting task. While being more explainable, our model also obtains a relative improvement of up to 17.7 % on MRR compared to the previous best KG forecasting methods. We also conduct a survey with 53 respondents, and the results show that the reasoning arguments extracted by the model for link forecasting are aligned with human understanding. Reasoning, a process of inferring new knowledge from available facts, has long been considered to be an essential subject in artificial intelligence (AI). Recently, the KGaugmented reasoning process has been studied in (Das et al., 2017; Ren et al., 2020), where knowledge graphs store factual information in form of triples (s, p, o), e.g. In particular, s (subject) and o (object) are expressed as nodes in knowledge graphs and p (predicate) as an edge type. Most knowledge graph models assume that the underlying graph is static. However, in the real world, facts and knowledge change with time, which can be treated as time-dependent multi-relational data. To accommodate time-evolving multi-relational data, temporal KGs have been introduced (Boschee et al., 2015), where temporal events are represented as a quadruple by extending the static triplet with timestamps describing when these events occurred, i.e. (Barack Obama, inaugurated, as president of the US, 2009/01/20).
Temporal Knowledge Graph Forecasting with Neural ODE
Ding, Zifeng, Han, Zhen, Ma, Yunpu, Tresp, Volker
Learning node representation on dynamically-evolving, multi-relational graph data has gained great research interest. However, most of the existing models for temporal knowledge graph forecasting use Recurrent Neural Network (RNN) with discrete depth to capture temporal information, while time is a continuous variable. Inspired by Neural Ordinary Differential Equation (NODE), we extend the idea of continuum-depth models to time-evolving multi-relational graph data, and propose a novel Temporal Knowledge Graph Forecasting model with NODE. Our model captures temporal information through NODE and structural information through a Graph Neural Network (GNN). Thus, our graph ODE model achieves a continuous model in time and efficiently learns node representation for future prediction. We evaluate our model on six temporal knowledge graph datasets by performing link forecasting. Experiment results show the superiority of our model.
DyERNIE: Dynamic Evolution of Riemannian Manifold Embeddings for Temporal Knowledge Graph Completion
Han, Zhen, Chen, Peng, Ma, Yunpu, Tresp, Volker
There has recently been increasing interest in learning representations of temporal knowledge graphs (KGs), which record the dynamic relationships between entities over time. Temporal KGs often exhibit multiple simultaneous non-Euclidean structures, such as hierarchical and cyclic structures. However, existing embedding approaches for temporal KGs typically learn entity representations and their dynamic evolution in the Euclidean space, which might not capture such intrinsic structures very well. To this end, we propose Dy- ERNIE, a non-Euclidean embedding approach that learns evolving entity representations in a product of Riemannian manifolds, where the composed spaces are estimated from the sectional curvatures of underlying data. Product manifolds enable our approach to better reflect a wide variety of geometric structures on temporal KGs. Besides, to capture the evolutionary dynamics of temporal KGs, we let the entity representations evolve according to a velocity vector defined in the tangent space at each timestamp. We analyze in detail the contribution of geometric spaces to representation learning of temporal KGs and evaluate our model on temporal knowledge graph completion tasks. Extensive experiments on three real-world datasets demonstrate significantly improved performance, indicating that the dynamics of multi-relational graph data can be more properly modeled by the evolution of embeddings on Riemannian manifolds.
Learning Individualized Treatment Rules with Estimated Translated Inverse Propensity Score
Wu, Zhiliang, Yang, Yinchong, Ma, Yunpu, Liu, Yushan, Zhao, Rui, Moor, Michael, Tresp, Volker
Randomized controlled trials typically analyze the effectiveness of treatments with the goal of making treatment recommendations for patient subgroups. With the advance of electronic health records, a great variety of data has been collected in clinical practice, enabling the evaluation of treatments and treatment policies based on observational data. In this paper, we focus on learning individualized treatment rules (ITRs) to derive a treatment policy that is expected to generate a better outcome for an individual patient. In our framework, we cast ITRs learning as a contextual bandit problem and minimize the expected risk of the treatment policy. We conduct experiments with the proposed framework both in a simulation study and based on a real-world dataset. In the latter case, we apply our proposed method to learn the optimal ITRs for the administration of intravenous (IV) fluids and vasopressors (VP). Based on various offline evaluation methods, we could show that the policy derived in our framework demonstrates better performance compared to both the physicians and other baselines, including a simple treatment prediction approach. As a long-term goal, our derived policy might eventually lead to better clinical guidelines for the administration of IV and VP.
Variational Quantum Circuit Model for Knowledge Graphs Embedding
Ma, Yunpu, Tresp, Volker, Zhao, Liming, Wang, Yuyi
In this work, we propose the first quantum Ans\"atze for the statistical relational learning on knowledge graphs using parametric quantum circuits. We introduce two types of variational quantum circuits for knowledge graph embedding. Inspired by the classical representation learning, we first consider latent features for entities as coefficients of quantum states, while predicates are characterized by parametric gates acting on the quantum states. For the first model, the quantum advantages disappear when it comes to the optimization of this model. Therefore, we introduce a second quantum circuit model where embeddings of entities are generated from parameterized quantum gates acting on the pure quantum state. The benefit of the second method is that the quantum embeddings can be trained efficiently meanwhile preserving the quantum advantages. We show the proposed methods can achieve comparable results to the state-of-the-art classical models, e.g., RESCAL, DistMult. Furthermore, after optimizing the models, the complexity of inductive inference on the knowledge graphs might be reduced with respect to the number of entities.
Improving Visual Relationship Detection using Semantic Modeling of Scene Descriptions
Baier, Stephan, Ma, Yunpu, Tresp, Volker
Structured scene descriptions of images are useful for the automatic processing and querying of large image databases. We show how the combination of a semantic and a visual statistical model can improve on the task of mapping images to their associated scene description. In this paper we consider scene descriptions which are represented as a set of triples (subject, predicate, object), where each triple consists of a pair of visual objects, which appear in the image, and the relationship between them (e.g. man-riding-elephant, man-wearing-hat). We combine a standard visual model for object detection, based on convolutional neural networks, with a latent variable model for link prediction. We apply multiple state-of-the-art link prediction methods and compare their capability for visual relationship detection. One of the main advantages of link prediction methods is that they can also generalize to triples, which have never been observed in the training data. Our experimental results on the recently published Stanford Visual Relationship dataset, a challenging real world dataset, show that the integration of a semantic model using link prediction methods can significantly improve the results for visual relationship detection. Our combined approach achieves superior performance compared to the state-of-the-art method from the Stanford computer vision group.
Improving Information Extraction from Images with Learned Semantic Models
Baier, Stephan, Ma, Yunpu, Tresp, Volker
Many applications require an understanding of an image that goes beyond the simple detection and classification of its objects. In particular, a great deal of semantic information is carried in the relationships between objects. We have previously shown that the combination of a visual model and a statistical semantic prior model can improve on the task of mapping images to their associated scene description. In this paper, we review the model and compare it to a novel conditional multi-way model for visual relationship detection, which does not include an explicitly trained visual prior model. We also discuss potential relationships between the proposed methods and memory models of the human brain.
Embedding Models for Episodic Memory
Ma, Yunpu, Tresp, Volker, Daxberger, Erik
In recent years a number of large-scale triple-oriented knowledge graphs have been generated and various models have been proposed to perform learning in those graphs. Most knowledge graphs are static and reflect the world in its current state. In reality, of course, the state of the world is changing: a healthy person becomes diagnosed with a disease and a new president is inaugurated. In this paper, we extend models for static knowledge graphs to temporal knowledge graphs. This enables us to store episodic data and to generalize to new facts (inductive learning). We generalize leading learning models for static knowledge graphs (i.e., Tucker, RESCAL, HolE, ComplEx, DistMult) to temporal knowledge graphs. In particular, we introduce a new tensor model, ConT, with superior generalization performance. The performances of all proposed models are analyzed on two different datasets: the Global Database of Events, Language, and Tone (GDELT) and the database for Integrated Conflict Early Warning System (ICEWS). We argue that temporal knowledge graph embeddings might be models also for cognitive episodic memory (facts we remember and can recollect) and that a semantic memory (current facts we know) can be generated from episodic memory by a marginalization operation. We validate this episodic-to-semantic projection hypothesis with the ICEWS dataset.
The Tensor Memory Hypothesis
Tresp, Volker, Ma, Yunpu
We discuss memory models which are based on tensor decompositions using latent representations of entities and events. We show how episodic memory and semantic memory can be realized and discuss how new memory traces can be generated from sensory input: Existing memories are the basis for perception and new memories are generated via perception. We relate our mathematical approach to the hippocampal memory indexing theory. We describe the first detailed mathematical models for the complete processing pipeline from sensory input and its semantic decoding, i.e., perception, to the formation of episodic and semantic memories and their declarative semantic decodings. Our main hypothesis is that perception includes an active semantic decoding process, which relies on latent representations of entities and predicates, and that episodic and semantic memories depend on the same decoding process. We contribute to the debate between the leading memory consolidation theories, i.e., the standard consolidation theory (SCT) and the multiple trace theory (MTT). The latter is closely related to the complementary learning systems (CLS) framework. In particular, we show explicitly how episodic memory can teach the neocortex to form a semantic memory, which is a core issue in MTT and CLS.