Plotting

 Ma, Yunpu


ForecastTKGQuestions: A Benchmark for Temporal Question Answering and Forecasting over Temporal Knowledge Graphs

arXiv.org Artificial Intelligence

Question answering over temporal knowledge graphs (TKGQA) has recently found increasing interest. TKGQA requires temporal reasoning techniques to extract the relevant information from temporal knowledge bases. The only existing TKGQA dataset, i.e., CronQuestions, consists of temporal questions based on the facts from a fixed time period, where a temporal knowledge graph (TKG) spanning the same period can be fully used for answer inference, allowing the TKGQA models to use even the future knowledge to answer the questions based on the past facts. In real-world scenarios, however, it is also common that given the knowledge until now, we wish the TKGQA systems to answer the questions asking about the future. As humans constantly seek plans for the future, building TKGQA systems for answering such forecasting questions is important. Nevertheless, this has still been unexplored in previous research. In this paper, we propose a novel task: forecasting question answering over temporal knowledge graphs. We also propose a large-scale TKGQA benchmark dataset, i.e., ForecastTKGQuestions, for this task. It includes three types of questions, i.e., entity prediction, yes-no, and fact reasoning questions. For every forecasting question in our dataset, QA models can only have access to the TKG information before the timestamp annotated in the given question for answer inference. We find that the state-of-the-art TKGQA methods perform poorly on forecasting questions, and they are unable to answer yes-no questions and fact reasoning questions. To this end, we propose ForecastTKGQA, a TKGQA model that employs a TKG forecasting module for future inference, to answer all three types of questions. Experimental results show that ForecastTKGQA outperforms recent TKGQA methods on the entity prediction questions, and it also shows great effectiveness in answering the other two types of questions.


Improving Few-Shot Inductive Learning on Temporal Knowledge Graphs using Confidence-Augmented Reinforcement Learning

arXiv.org Artificial Intelligence

Temporal knowledge graph completion (TKGC) aims to predict the missing links among the entities in a temporal knwoledge graph (TKG). Most previous TKGC methods only consider predicting the missing links among the entities seen in the training set, while they are unable to achieve great performance in link prediction concerning newly-emerged unseen entities. Recently, a new task, i.e., TKG few-shot out-of-graph (OOG) link prediction, is proposed, where TKGC models are required to achieve great link prediction performance concerning newly-emerged entities that only have few-shot observed examples. In this work, we propose a TKGC method FITCARL that combines few-shot learning with reinforcement learning to solve this task. In FITCARL, an agent traverses through the whole TKG to search for the prediction answer. A policy network is designed to guide the search process based on the traversed path. To better address the data scarcity problem in the few-shot setting, we introduce a module that computes the confidence of each candidate action and integrate it into the policy for action selection. We also exploit the entity concept information with a novel concept regularizer to boost model performance. Experimental results show that FITCARL achieves stat-of-the-art performance on TKG few-shot OOG link prediction.


Learning Meta Representations of One-shot Relations for Temporal Knowledge Graph Link Prediction

arXiv.org Artificial Intelligence

Few-shot relational learning for static knowledge graphs (KGs) has drawn greater interest in recent years, while few-shot learning for temporal knowledge graphs (TKGs) has hardly been studied. Compared to KGs, TKGs contain rich temporal information, thus requiring temporal reasoning techniques for modeling. This poses a greater challenge in learning few-shot relations in the temporal context. In this paper, we follow the previous work that focuses on few-shot relational learning on static KGs and extend two fundamental TKG reasoning tasks, i.e., interpolated and extrapolated link prediction, to the one-shot setting. We propose four new large-scale benchmark datasets and develop a TKG reasoning model for learning one-shot relations in TKGs. Experimental results show that our model can achieve superior performance on all datasets in both TKG link prediction tasks.


TLogic: Temporal Logical Rules for Explainable Link Forecasting on Temporal Knowledge Graphs

arXiv.org Artificial Intelligence

Conventional static knowledge graphs model entities in relational data as nodes, connected by edges of specific relation types. However, information and knowledge evolve continuously, and temporal dynamics emerge, which are expected to influence future situations. In temporal knowledge graphs, time information is integrated into the graph by equipping each edge with a timestamp or a time range. Embedding-based methods have been introduced for link prediction on temporal knowledge graphs, but they mostly lack explainability and comprehensible reasoning chains. Particularly, they are usually not designed to deal with link forecasting -- event prediction involving future timestamps. We address the task of link forecasting on temporal knowledge graphs and introduce TLogic, an explainable framework that is based on temporal logical rules extracted via temporal random walks. We compare TLogic with state-of-the-art baselines on three benchmark datasets and show better overall performance while our method also provides explanations that preserve time consistency. Furthermore, in contrast to most state-of-the-art embedding-based methods, TLogic works well in the inductive setting where already learned rules are transferred to related datasets with a common vocabulary.


A Simple But Powerful Graph Encoder for Temporal Knowledge Graph Completion

arXiv.org Artificial Intelligence

While knowledge graphs contain rich semantic knowledge of various entities and the relational information among them, temporal knowledge graphs (TKGs) further indicate the interactions of the entities over time. To study how to better model TKGs, automatic temporal knowledge graph completion (TKGC) has gained great interest. Recent TKGC methods aim to integrate advanced deep learning techniques, e.g., attention mechanism and Transformer, to boost model performance. However, we find that compared to adopting various kinds of complex modules, it is more beneficial to better utilize the whole amount of temporal information along the time axis. In this paper, we propose a simple but powerful graph encoder TARGCN for TKGC. TARGCN is parameter-efficient, and it extensively utilizes the information from the whole temporal context. We perform experiments on three benchmark datasets. Our model can achieve a more than 42% relative improvement on GDELT dataset compared with the state-of-the-art model. Meanwhile, it outperforms the strongest baseline on ICEWS05-15 dataset with around 18.5% fewer parameters.


MIRA: Multihop Relation Prediction in Temporal Knowledge Graphs

arXiv.org Artificial Intelligence

In knowledge graph reasoning, we observe a trend to analyze temporal data evolving over time. The additional temporal dimension is attached to facts in a knowledge base resulting in quadruples between entities such as (Nintendo, released, Super Mario, Sep-13-1985), where the relation between two entities is associated to a specific time interval or point in time. Multi-hop reasoning on inferred subgraphs connecting entities within a knowledge graph can be formulated as a reinforcement learning task where the agent sequentially performs inference upon the explored subgraph. The task in this work is to infer the predicate between a subject and an object entity, i.e., (subject, ?, object, time), being valid at a certain timestamp or time interval. Given query entities, our agent starts to gather temporal relevant information about the neighborhood of the subject and object. The encoding of information about the explored graph structures is referred to as fingerprints. Subsequently, we use the two fingerprints as input to a Q-Network. Our agent decides sequentially which relational type needs to be explored next expanding the local subgraphs of the query entities in order to find promising paths between them. The evaluation shows that the proposed method not only yields results being in line with state-of-the-art embedding algorithms for temporal Knowledge Graphs (tKG), but we also gain information about the relevant structures between subjects and objects.


SEA: Graph Shell Attention in Graph Neural Networks

arXiv.org Artificial Intelligence

A common issue in Graph Neural Networks (GNNs) is known as over-smoothing. By increasing the number of iterations within the message-passing of GNNs, the nodes' representations of the input graph align with each other and become indiscernible. Recently, it has been shown that increasing a model's complexity by integrating an attention mechanism yields more expressive architectures. This is majorly contributed to steering the nodes' representations only towards nodes that are more informative than others. Transformer models in combination with GNNs result in architectures including Graph Transformer Layers (GTL), where layers are entirely based on the attention operation. However, the calculation of a node's representation is still restricted to the computational working flow of a GNN. In our work, we relax the GNN architecture by means of implementing a routing heuristic. Specifically, the nodes' representations are routed to dedicated experts. Each expert calculates the representations according to their respective GNN workflow. The definitions of distinguishable GNNs result from k-localized views starting from the central node. We call this procedure Graph Shell Attention (SEA), where experts process different subgraphs in a transformer-motivated fashion. Intuitively, by increasing the number of experts, the models gain in expressiveness such that a node's representation is solely based on nodes that are located within the receptive field of an expert. We evaluate our architecture on various benchmark datasets showing competitive results compared to state-of-the-art models.


The Tensor Brain: A Unified Theory of Perception, Memory and Semantic Decoding

arXiv.org Artificial Intelligence

We present a unified computational theory of perception and memory. In our model, perception, episodic memory, and semantic memory are realized by different functional and operational modes of the oscillating interactions between an index layer and a representation layer in a bilayer tensor network (BTN). The memoryless semantic {representation layer} broadcasts information. In cognitive neuroscience, it would be the "mental canvas", or the "global workspace" and reflects the cognitive brain state. The symbolic {index layer} represents concepts and past episodes, whose semantic embeddings are implemented in the connection weights between both layers. In addition, we propose a {working memory layer} as a processing center and information buffer. Episodic and semantic memory realize memory-based reasoning, i.e., the recall of relevant past information to enrich perception, and are personalized to an agent's current state, as well as to an agent's unique memories. Episodic memory stores and retrieves past observations and provides provenance and context. Recent episodic memory enriches perception by the retrieval of perceptual experiences, which provide the agent with a sense about the here and now: to understand its own state, and the world's semantic state in general, the agent needs to know what happened recently, in recent scenes, and on recently perceived entities. Remote episodic memory retrieves relevant past experiences, contributes to our conscious self, and, together with semantic memory, to a large degree defines who we are as individuals.


TimeTraveler: Reinforcement Learning for Temporal Knowledge Graph Forecasting

arXiv.org Artificial Intelligence

Temporal knowledge graph (TKG) reasoning is a crucial task that has gained increasing research interest in recent years. Most existing methods focus on reasoning at past timestamps to complete the missing facts, and there are only a few works of reasoning on known TKGs to forecast future facts. Compared with the completion task, the forecasting task is more difficult that faces two main challenges: (1) how to effectively model the time information to handle future timestamps? (2) how to make inductive inference to handle previously unseen entities that emerge over time? To address these challenges, we propose the first reinforcement learning method for forecasting. Specifically, the agent travels on historical knowledge graph snapshots to search for the answer. Our method defines a relative time encoding function to capture the timespan information, and we design a novel time-shaped reward based on Dirichlet distribution to guide the model learning. Furthermore, we propose a novel representation method for unseen entities to improve the inductive inference ability of the model. We evaluate our method for this link prediction task at future timestamps. Extensive experiments on four benchmark datasets demonstrate substantial performance improvement meanwhile with higher explainability, less calculation, and fewer parameters when compared with existing state-of-the-art methods.


Adaptive Multi-Resolution Attention with Linear Complexity

arXiv.org Artificial Intelligence

Transformers have improved the state-of-the-art across numerous tasks in sequence modeling. Besides the quadratic computational and memory complexity w.r.t the sequence length, the self-attention mechanism only processes information at the same scale, i.e., all attention heads are in the same resolution, resulting in the limited power of the Transformer. To remedy this, we propose a novel and efficient structure named Adaptive Multi-Resolution Attention (AdaMRA for short), which scales linearly to sequence length in terms of time and space. Specifically, we leverage a multi-resolution multi-head attention mechanism, enabling attention heads to capture long-range contextual information in a coarse-to-fine fashion. Moreover, to capture the potential relations between query representation and clues of different attention granularities, we leave the decision of which resolution of attention to use to query, which further improves the model's capacity compared to vanilla Transformer. In an effort to reduce complexity, we adopt kernel attention without degrading the performance. Extensive experiments on several benchmarks demonstrate the effectiveness and efficiency of our model by achieving a state-of-the-art performance-efficiency-memory trade-off. To facilitate AdaMRA utilization by the scientific community, the code implementation will be made publicly available.