Goto

Collaborating Authors

 Ma, Xingjun


Quality Evaluation of GANs Using Cross Local Intrinsic Dimensionality

arXiv.org Machine Learning

Generative Adversarial Networks (GANs) are an elegant mechanism for data generation. However, a key challenge when using GANs is how to best measure their ability to generate realistic data. In this paper, we demonstrate that an intrinsic dimensional characterization of the data space learned by a GAN model leads to an effective evaluation metric for GAN quality. In particular, we propose a new evaluation measure, CrossLID, that assesses the local intrinsic dimensionality (LID) of real-world data with respect to neighborhoods found in GAN-generated samples. Intuitively, CrossLID measures the degree to which manifolds of two data distributions coincide with each other. In experiments on 4 benchmark image datasets, we compare our proposed measure to several state-of-the-art evaluation metrics. Our experiments show that CrossLID is strongly correlated with the progress of GAN training, is sensitive to mode collapse, is robust to small-scale noise and image transformations, and robust to sample size. Furthermore, we show how CrossLID can be used within the GAN training process to improve generation quality.


Black-box Adversarial Attacks on Video Recognition Models

arXiv.org Machine Learning

Deep neural networks (DNNs) are known for their vulnerability to adversarial examples. These are examples that have undergone a small, carefully crafted perturbation, and which can easily fool a DNN into making misclassifications at test time. Thus far, the field of adversarial research has mainly focused on image models, under either a white-box setting, where an adversary has full access to model parameters, or a black-box setting where an adversary can only query the target model for probabilities or labels. Whilst several white-box attacks have been proposed for video models, black-box video attacks are still unexplored. To close this gap, we propose the first black-box video attack framework, called V-BAD. V-BAD is a general framework for adversarial gradient estimation and rectification, based on Natural Evolution Strategies (NES). In particular, V-BAD utilizes \textit{tentative perturbations} transferred from image models, and \textit{partition-based rectifications} found by the NES on partitions (patches) of tentative perturbations, to obtain good adversarial gradient estimates with fewer queries to the target model. V-BAD is equivalent to estimating the projection of an adversarial gradient on a selected subspace. Using three benchmark video datasets, we demonstrate that V-BAD can craft both untargeted and targeted attacks to fool two state-of-the-art deep video recognition models. For the targeted attack, it achieves $>$93\% success rate using only an average of $3.4 \sim 8.4 \times 10^4$ queries, a similar number of queries to state-of-the-art black-box image attacks. This is despite the fact that videos often have two orders of magnitude higher dimensionality than static images. We believe that V-BAD is a promising new tool to evaluate and improve the robustness of video recognition models to black-box adversarial attacks.


Dimensionality-Driven Learning with Noisy Labels

arXiv.org Machine Learning

Datasets with significant proportions of noisy (incorrect) class labels present challenges for training accurate Deep Neural Networks (DNNs). We propose a new perspective for understanding DNN generalization for such datasets, by investigating the dimensionality of the deep representation subspace of training samples. We show that from a dimensionality perspective, DNNs exhibit quite distinctive learning styles when trained with clean labels versus when trained with a proportion of noisy labels. Based on this finding, we develop a new dimensionality-driven learning strategy, which monitors the dimensionality of subspaces during training and adapts the loss function accordingly. We empirically demonstrate that our approach is highly tolerant to significant proportions of noisy labels, and can effectively learn low-dimensional local subspaces that capture the data distribution.


Adversarial Generation of Real-time Feedback with Neural Networks for Simulation-based Training

arXiv.org Machine Learning

Simulation-based training (SBT) is gaining popularity as a low-cost and convenient training technique in a vast range of applications. However, for a SBT platform to be fully utilized as an effective training tool, it is essential that feedback on performance is provided automatically in real-time during training. It is the aim of this paper to develop an efficient and effective feedback generation method for the provision of real-time feedback in SBT. Existing methods either have low effectiveness in improving novice skills or suffer from low efficiency, resulting in their inability to be used in real-time. In this paper, we propose a neural network based method to generate feedback using the adversarial technique. The proposed method utilizes a bounded adversarial update to minimize a L1 regularized loss via back-propagation. We empirically show that the proposed method can be used to generate simple, yet effective feedback. Also, it was observed to have high effectiveness and efficiency when compared to existing methods, thus making it a promising option for real-time feedback generation in SBT.


Unbiased Multivariate Correlation Analysis

AAAI Conferences

Correlation measures are a key element of statistics and machine learning, and essential for a wide range of data analysis tasks. Most existing correlation measures are for pairwise relationships, but real-world data can also exhibit complex multivariate correlations, involving three or more variables. We argue that multivariate correlation measures should be comparable, interpretable, scalable and unbiased. However, no existing measures satisfy all these requirements. In this paper, we propose an unbiased multivariate correlation measure, called UMC, which satisfies all the above criteria. UMC is a cumulative entropy based non-parametric multivariate correlation measure, which can capture both linear and non-linear correlations for groups of three or more variables. It employs a correction for chance using a statistical model of independence to address the issue of bias. UMC has high interpretability and we empirically show it outperforms state-of-the-art multivariate correlation measures in terms of statistical power, as well as for use in both subspace clustering and outlier detection tasks.