Plotting

 Ma, Lizhuang


Contrastive Learning for Compact Single Image Dehazing

arXiv.org Artificial Intelligence

Single image dehazing is a challenging ill-posed problem due to the severe information degeneration. However, existing deep learning based dehazing methods only adopt clear images as positive samples to guide the training of dehazing network while negative information is unexploited. Moreover, most of them focus on strengthening the dehazing network with an increase of depth and width, leading to a significant requirement of computation and memory. In this paper, we propose a novel contrastive regularization (CR) built upon contrastive learning to exploit both the information of hazy images and clear images as negative and positive samples, respectively. CR ensures that the restored image is pulled to closer to the clear image and pushed to far away from the hazy image in the representation space. Furthermore, considering trade-off between performance and memory storage, we develop a compact dehazing network based on autoencoder-like (AE) framework. It involves an adaptive mixup operation and a dynamic feature enhancement module, which can benefit from preserving information flow adaptively and expanding the receptive field to improve the network's transformation capability, respectively. We term our dehazing network with autoencoder and contrastive regularization as AECR-Net. The extensive experiments on synthetic and real-world datasets demonstrate that our AECR-Net surpass the state-of-the-art approaches. The code is released in https://github.com/GlassyWu/AECR-Net.


Efficient Super Resolution Using Binarized Neural Network

arXiv.org Artificial Intelligence

Deep convolutional neural networks (DCNNs) have recently demonstrated high-quality results in single-image super-resolution (SR). DCNNs often suffer from over-parametrization and large amounts of redundancy, which results in inefficient inference and high memory usage, preventing massive applications on mobile devices. As a way to significantly reduce model size and computation time, binarized neural network has only been shown to excel on semantic-level tasks such as image classification and recognition. However, little effort of network quantization has been spent on image enhancement tasks like SR, as network quantization is usually assumed to sacrifice pixel-level accuracy. In this work, we explore an network-binarization approach for SR tasks without sacrificing much reconstruction accuracy. To achieve this, we binarize the convolutional filters in only residual blocks, and adopt a learnable weight for each binary filter. We evaluate this idea on several state-of-the-art DCNN-based architectures, and show that binarized SR networks achieve comparable qualitative and quantitative results as their real-weight counterparts. Moreover, the proposed binarized strategy could help reduce model size by 80% when applying on SRResNet, and could potentially speed up inference by 5 times.