Goto

Collaborating Authors

 Ma, Jing


Cluster-based Deep Ensemble Learning for Emotion Classification in Internet Memes

arXiv.org Artificial Intelligence

Memes have gained popularity as a means to share visual ideas through the Internet and social media by mixing text, images and videos, often for humorous purposes. Research enabling automated analysis of memes has gained attention in recent years, including among others the task of classifying the emotion expressed in memes. In this paper, we propose a novel model, cluster-based deep ensemble learning (CDEL), for emotion classification in memes. CDEL is a hybrid model that leverages the benefits of a deep learning model in combination with a clustering algorithm, which enhances the model with additional information after clustering memes with similar facial features. We evaluate the performance of CDEL on a benchmark dataset for emotion classification, proving its effectiveness by outperforming a wide range of baseline models and achieving state-of-the-art performance. Further evaluation through ablated models demonstrates the effectiveness of the different components of CDEL.


Interpreting Unfairness in Graph Neural Networks via Training Node Attribution

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have emerged as the leading paradigm for solving graph analytical problems in various real-world applications. Nevertheless, GNNs could potentially render biased predictions towards certain demographic subgroups. Understanding how the bias in predictions arises is critical, as it guides the design of GNN debiasing mechanisms. However, most existing works overwhelmingly focus on GNN debiasing, but fall short on explaining how such bias is induced. In this paper, we study a novel problem of interpreting GNN unfairness through attributing it to the influence of training nodes. Specifically, we propose a novel strategy named Probabilistic Distribution Disparity (PDD) to measure the bias exhibited in GNNs, and develop an algorithm to efficiently estimate the influence of each training node on such bias. We verify the validity of PDD and the effectiveness of influence estimation through experiments on real-world datasets. Finally, we also demonstrate how the proposed framework could be used for debiasing GNNs. Open-source code can be found at https://github.com/yushundong/BIND.


A Coarse-to-fine Cascaded Evidence-Distillation Neural Network for Explainable Fake News Detection

arXiv.org Artificial Intelligence

Existing fake news detection methods aim to classify a piece of news as true or false and provide veracity explanations, achieving remarkable performances. However, they often tailor automated solutions on manual fact-checked reports, suffering from limited news coverage and debunking delays. When a piece of news has not yet been fact-checked or debunked, certain amounts of relevant raw reports are usually disseminated on various media outlets, containing the wisdom of crowds to verify the news claim and explain its verdict. In this paper, we propose a novel Coarse-to-fine Cascaded Evidence-Distillation (CofCED) neural network for explainable fake news detection based on such raw reports, alleviating the dependency on fact-checked ones. Specifically, we first utilize a hierarchical encoder for web text representation, and then develop two cascaded selectors to select the most explainable sentences for verdicts on top of the selected top-K reports in a coarse-to-fine manner. Besides, we construct two explainable fake news datasets, which are publicly available. Experimental results demonstrate that our model significantly outperforms state-of-the-art baselines and generates high-quality explanations from diverse evaluation perspectives.


Learning Causal Effects on Hypergraphs

arXiv.org Artificial Intelligence

Hypergraphs provide an effective abstraction for modeling multi-way group interactions among nodes, where each hyperedge can connect any number of nodes. Different from most existing studies which leverage statistical dependencies, we study hypergraphs from the perspective of causality. Specifically, in this paper, we focus on the problem of individual treatment effect (ITE) estimation on hypergraphs, aiming to estimate how much an intervention (e.g., wearing face covering) would causally affect an outcome (e.g., COVID-19 infection) of each individual node. Existing works on ITE estimation either assume that the outcome on one individual should not be influenced by the treatment assignments on other individuals (i.e., no interference), or assume the interference only exists between pairs of connected individuals in an ordinary graph. We argue that these assumptions can be unrealistic on real-world hypergraphs, where higher-order interference can affect the ultimate ITE estimations due to the presence of group interactions. In this work, we investigate high-order interference modeling, and propose a new causality learning framework powered by hypergraph neural networks. Extensive experiments on real-world hypergraphs verify the superiority of our framework over existing baselines.


Federated Graph Classification over Non-IID Graphs

arXiv.org Artificial Intelligence

Federated learning has emerged as an important paradigm for training machine learning models in different domains. For graph-level tasks such as graph classification, graphs can also be regarded as a special type of data samples, which can be collected and stored in separate local systems. Similar to other domains, multiple local systems, each holding a small set of graphs, may benefit from collaboratively training a powerful graph mining model, such as the popular graph neural networks (GNNs). To provide more motivation towards such endeavors, we analyze real-world graphs from different domains to confirm that they indeed share certain graph properties that are statistically significant compared with random graphs. However, we also find that different sets of graphs, even from the same domain or same dataset, are non-IID regarding both graph structures and node features. To handle this, we propose a graph clustered federated learning (GCFL) framework that dynamically finds clusters of local systems based on the gradients of GNNs, and theoretically justify that such clusters can reduce the structure and feature heterogeneity among graphs owned by the local systems. Moreover, we observe the gradients of GNNs to be rather fluctuating in GCFL which impedes high-quality clustering, and design a gradient sequence-based clustering mechanism based on dynamic time warping (GCFL+). Extensive experimental results and in-depth analysis demonstrate the effectiveness of our proposed frameworks.


Spatio-Temporal Tensor Sketching via Adaptive Sampling

arXiv.org Machine Learning

Mining massive spatio-temporal data can help a variety of real-world applications such as city capacity planning, event management, and social network analysis. The tensor representation can be used to capture the correlation between space and time and simultaneously exploit the latent structure of the spatial and temporal patterns in an unsupervised fashion. However, the increasing volume of spatio-temporal data has made it prohibitively expensive to store and analyze using tensor factorization. In this paper, we propose SkeTenSmooth, a novel tensor factorization framework that uses adaptive sampling to compress the tensor in a temporally streaming fashion and preserves the underlying global structure. SkeTenSmooth adaptively samples incoming tensor slices according to the detected data dynamics. Thus, the sketches are more representative and informative of the tensor dynamic patterns. In addition, we propose a robust tensor factorization method that can deal with the sketched tensor and recover the original patterns. Experiments on the New York City Yellow Taxi data show that SkeTenSmooth greatly reduces the memory cost and outperforms random sampling and fixed rate sampling method in terms of retaining the underlying patterns.


Privacy-Preserving Tensor Factorization for Collaborative Health Data Analysis

arXiv.org Machine Learning

Tensor factorization has been demonstrated as an efficient approach for computational phenotyping, where massive electronic health records (EHRs) are converted to concise and meaningful clinical concepts. While distributing the tensor factorization tasks to local sites can avoid direct data sharing, it still requires the exchange of intermediary results which could reveal sensitive patient information. Therefore, the challenge is how to jointly decompose the tensor under rigorous and principled privacy constraints, while still support the model's interpretability. We propose DPFact, a privacy-preserving collaborative tensor factorization method for computational phenotyping using EHR. It embeds advanced privacy-preserving mechanisms with collaborative learning. Hospitals can keep their EHR database private but also collaboratively learn meaningful clinical concepts by sharing differentially private intermediary results. Moreover, DPFact solves the heterogeneous patient population using a structured sparsity term. In our framework, each hospital decomposes its local tensors, and sends the updated intermediary results with output perturbation every several iterations to a semi-trusted server which generates the phenotypes. The evaluation on both real-world and synthetic datasets demonstrated that under strict privacy constraints, our method is more accurate and communication-efficient than state-of-the-art baseline methods.