Not enough data to create a plot.
Try a different view from the menu above.
Ma, Chen
Mutually Guided Few-shot Learning for Relational Triple Extraction
Yang, Chengmei, Jiang, Shuai, He, Bowei, Ma, Chen, He, Lianghua
Knowledge graphs (KGs), containing many entity-relation-entity triples, provide rich information for downstream applications. Although extracting triples from unstructured texts has been widely explored, most of them require a large number of labeled instances. The performance will drop dramatically when only few labeled data are available. To tackle this problem, we propose the Mutually Guided Few-shot learning framework for Relational Triple Extraction (MG-FTE). Specifically, our method consists of an entity-guided relation proto-decoder to classify the relations firstly and a relation-guided entity proto-decoder to extract entities based on the classified relations. To draw the connection between entity and relation, we design a proto-level fusion module to boost the performance of both entity extraction and relation classification. Moreover, a new cross-domain few-shot triple extraction task is introduced. Extensive experiments show that our method outperforms many state-of-the-art methods by 12.6 F1 score on FewRel 1.0 (single-domain) and 20.5 F1 score on FewRel 2.0 (cross-domain).
Sim2Rec: A Simulator-based Decision-making Approach to Optimize Real-World Long-term User Engagement in Sequential Recommender Systems
Chen, Xiong-Hui, He, Bowei, Yu, Yang, Li, Qingyang, Qin, Zhiwei, Shang, Wenjie, Ye, Jieping, Ma, Chen
Long-term user engagement (LTE) optimization in sequential recommender systems (SRS) is shown to be suited by reinforcement learning (RL) which finds a policy to maximize long-term rewards. Meanwhile, RL has its shortcomings, particularly requiring a large number of online samples for exploration, which is risky in real-world applications. One of the appealing ways to avoid the risk is to build a simulator and learn the optimal recommendation policy in the simulator. In LTE optimization, the simulator is to simulate multiple users' daily feedback for given recommendations. However, building a user simulator with no reality-gap, i.e., can predict user's feedback exactly, is unrealistic because the users' reaction patterns are complex and historical logs for each user are limited, which might mislead the simulator-based recommendation policy. In this paper, we present a practical simulator-based recommender policy training approach, Simulation-to-Recommendation (Sim2Rec) to handle the reality-gap problem for LTE optimization. Specifically, Sim2Rec introduces a simulator set to generate various possibilities of user behavior patterns, then trains an environment-parameter extractor to recognize users' behavior patterns in the simulators. Finally, a context-aware policy is trained to make the optimal decisions on all of the variants of the users based on the inferred environment-parameters. The policy is transferable to unseen environments (e.g., the real world) directly as it has learned to recognize all various user behavior patterns and to make the correct decisions based on the inferred environment-parameters. Experiments are conducted in synthetic environments and a real-world large-scale ride-hailing platform, DidiChuxing. The results show that Sim2Rec achieves significant performance improvement, and produces robust recommendations in unseen environments.
Adapting Triplet Importance of Implicit Feedback for Personalized Recommendation
Wu, Haolun, Ma, Chen, Zhang, Yingxue, Liu, Xue, Tang, Ruiming, Coates, Mark
Implicit feedback is frequently used for developing personalized recommendation services due to its ubiquity and accessibility in real-world systems. In order to effectively utilize such information, most research adopts the pairwise ranking method on constructed training triplets (user, positive item, negative item) and aims to distinguish between positive items and negative items for each user. However, most of these methods treat all the training triplets equally, which ignores the subtle difference between different positive or negative items. On the other hand, even though some other works make use of the auxiliary information (e.g., dwell time) of user behaviors to capture this subtle difference, such auxiliary information is hard to obtain. To mitigate the aforementioned problems, we propose a novel training framework named Triplet Importance Learning (TIL), which adaptively learns the importance score of training triplets. We devise two strategies for the importance score generation and formulate the whole procedure as a bilevel optimization, which does not require any rule-based design. We integrate the proposed training procedure with several Matrix Factorization (MF)- and Graph Neural Network (GNN)-based recommendation models, demonstrating the compatibility of our framework. Via a comparison using three real-world datasets with many state-of-the-art methods, we show that our proposed method outperforms the best existing models by 3-21\% in terms of Recall@k for the top-k recommendation.
Artificial Intelligence Security Competition (AISC)
Dong, Yinpeng, Chen, Peng, Deng, Senyou, L, Lianji, Sun, Yi, Zhao, Hanyu, Li, Jiaxing, Tan, Yunteng, Liu, Xinyu, Dong, Yangyi, Xu, Enhui, Xu, Jincai, Xu, Shu, Fu, Xuelin, Sun, Changfeng, Han, Haoliang, Zhang, Xuchong, Chen, Shen, Sun, Zhimin, Cao, Junyi, Yao, Taiping, Ding, Shouhong, Wu, Yu, Lin, Jian, Wu, Tianpeng, Wang, Ye, Fu, Yu, Feng, Lin, Gao, Kangkang, Liu, Zeyu, Pang, Yuanzhe, Duan, Chengqi, Zhou, Huipeng, Wang, Yajie, Zhao, Yuhang, Wu, Shangbo, Lyu, Haoran, Lin, Zhiyu, Gao, Yifei, Li, Shuang, Wang, Haonan, Sang, Jitao, Ma, Chen, Zheng, Junhao, Li, Yijia, Shen, Chao, Lin, Chenhao, Cui, Zhichao, Liu, Guoshuai, Shi, Huafeng, Hu, Kun, Zhang, Mengxin
The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.
TIE: A Framework for Embedding-based Incremental Temporal Knowledge Graph Completion
Wu, Jiapeng, Xu, Yishi, Zhang, Yingxue, Ma, Chen, Coates, Mark, Cheung, Jackie Chi Kit
Reasoning in a temporal knowledge graph (TKG) is a critical task for information retrieval and semantic search. It is particularly challenging when the TKG is updated frequently. The model has to adapt to changes in the TKG for efficient training and inference while preserving its performance on historical knowledge. Recent work approaches TKG completion (TKGC) by augmenting the encoder-decoder framework with a time-aware encoding function. However, naively fine-tuning the model at every time step using these methods does not address the problems of 1) catastrophic forgetting, 2) the model's inability to identify the change of facts (e.g., the change of the political affiliation and end of a marriage), and 3) the lack of training efficiency. To address these challenges, we present the Time-aware Incremental Embedding (TIE) framework, which combines TKG representation learning, experience replay, and temporal regularization. We introduce a set of metrics that characterizes the intransigence of the model and propose a constraint that associates the deleted facts with negative labels. Experimental results on Wikidata12k and YAGO11k datasets demonstrate that the proposed TIE framework reduces training time by about ten times and improves on the proposed metrics compared to vanilla full-batch training. It comes without a significant loss in performance for any traditional measures. Extensive ablation studies reveal performance trade-offs among different evaluation metrics, which is essential for decision-making around real-world TKG applications.
Universal Successor Representations for Transfer Reinforcement Learning
Ma, Chen, Wen, Junfeng, Bengio, Yoshua
The objective of transfer reinforcement learning is to generalize from a set of previous tasks to unseen new tasks. In this work, we focus on the transfer scenario where the dynamics among tasks are the same, but their goals differ. Although general value function (Sutton et al., 2011) has been shown to be useful for knowledge transfer, learning a universal value function can be challenging in practice. To attack this, we propose (1) to use universal successor representations (USR) to represent the transferable knowledge and (2) a USR approximator (USRA) that can be trained by interacting with the environment. Our experiments show that USR can be effectively applied to new tasks, and the agent initialized by the trained USRA can achieve the goal considerably faster than random initialization.