Not enough data to create a plot.
Try a different view from the menu above.
Ma, Bingqi
VividFace: A Diffusion-Based Hybrid Framework for High-Fidelity Video Face Swapping
Shao, Hao, Wang, Shulun, Zhou, Yang, Song, Guanglu, He, Dailan, Qin, Shuo, Zong, Zhuofan, Ma, Bingqi, Liu, Yu, Li, Hongsheng
Video face swapping is becoming increasingly popular across various applications, yet existing methods primarily focus on static images and struggle with video face swapping because of temporal consistency and complex scenarios. In this paper, we present the first diffusion-based framework specifically designed for video face swapping. Our approach introduces a novel image-video hybrid training framework that leverages both abundant static image data and temporal video sequences, addressing the inherent limitations of video-only training. The framework incorporates a specially designed diffusion model coupled with a VidFaceVAE that effectively processes both types of data to better maintain temporal coherence of the generated videos. To further disentangle identity and pose features, we construct the Attribute-Identity Disentanglement Triplet (AIDT) Dataset, where each triplet has three face images, with two images sharing the same pose and two sharing the same identity. Enhanced with a comprehensive occlusion augmentation, this dataset also improves robustness against occlusions. Additionally, we integrate 3D reconstruction techniques as input conditioning to our network for handling large pose variations. Extensive experiments demonstrate that our framework achieves superior performance in identity preservation, temporal consistency, and visual quality compared to existing methods, while requiring fewer inference steps. Our approach effectively mitigates key challenges in video face swapping, including temporal flickering, identity preservation, and robustness to occlusions and pose variations.
Pretrained Reversible Generation as Unsupervised Visual Representation Learning
Xue, Rongkun, Zhang, Jinouwen, Niu, Yazhe, Shen, Dazhong, Ma, Bingqi, Liu, Yu, Yang, Jing
Recent generative models based on score matching and flow matching have significantly advanced generation tasks, but their potential in discriminative tasks remains underexplored. Previous approaches, such as generative classifiers, have not fully leveraged the capabilities of these models for discriminative tasks due to their intricate designs. We propose Pretrained Reversible Generation (PRG), which extracts unsupervised representations by reversing the generative process of a pretrained continuous flow model. PRG effectively reuses unsupervised generative models, leveraging their high capacity to serve as robust and generalizable feature extractors for downstream tasks. Our method consistently outperforms prior approaches across multiple benchmarks, achieving state-of-the-art performance among generative model-based methods, including 78\% top-1 accuracy on ImageNet. Extensive ablation studies further validate the effectiveness of our approach.
MedFLIP: Medical Vision-and-Language Self-supervised Fast Pre-Training with Masked Autoencoder
Li, Lei, Zhang, Tianfang, Zhang, Xinglin, Liu, Jiaqi, Ma, Bingqi, Luo, Yan, Chen, Tao
Within the domain of medical analysis, extensive research has explored the potential of mutual learning between Masked Autoencoders(MAEs) and multimodal data. However, the impact of MAEs on intermodality remains a key challenge. We introduce MedFLIP, a Fast Language-Image Pre-training method for Medical analysis. We explore MAEs for zero-shot learning with crossed domains, which enhances the model's ability to learn from limited data, a common scenario in medical diagnostics. We verify that masking an image does not affect inter-modal learning. Furthermore, we propose the SVD loss to enhance the representation learning for characteristics of medical images, aiming to improve classification accuracy by leveraging the structural intricacies of such data. Our theory posits that masking encourages semantic preservation, robust feature extraction, regularization, domain adaptation, and invariance learning. Lastly, we validate using language will improve the zero-shot performance for the medical image analysis. MedFLIP's scaling of the masking process marks an advancement in the field, offering a pathway to rapid and precise medical image analysis without the traditional computational bottlenecks. Through experiments and validation, MedFLIP demonstrates efficient performance improvements, helps for future research and application in medical diagnostics.