Goto

Collaborating Authors

 Ma, Bin


MossFormer: Pushing the Performance Limit of Monaural Speech Separation using Gated Single-Head Transformer with Convolution-Augmented Joint Self-Attentions

arXiv.org Artificial Intelligence

Transformer based models have provided significant performance improvements in monaural speech separation. However, there is still a performance gap compared to a recent proposed upper bound. The major limitation of the current dual-path Transformer models is the inefficient modelling of long-range elemental interactions and local feature patterns. In this work, we achieve the upper bound by proposing a gated single-head transformer architecture with convolution-augmented joint self-attentions, named \textit{MossFormer} (\textit{Mo}naural \textit{s}peech \textit{s}eparation Trans\textit{Former}). To effectively solve the indirect elemental interactions across chunks in the dual-path architecture, MossFormer employs a joint local and global self-attention architecture that simultaneously performs a full-computation self-attention on local chunks and a linearised low-cost self-attention over the full sequence. The joint attention enables MossFormer model full-sequence elemental interaction directly. In addition, we employ a powerful attentive gating mechanism with simplified single-head self-attentions. Besides the attentive long-range modelling, we also augment MossFormer with convolutions for the position-wise local pattern modelling. As a consequence, MossFormer significantly outperforms the previous models and achieves the state-of-the-art results on WSJ0-2/3mix and WHAM!/WHAMR! benchmarks. Our model achieves the SI-SDRi upper bound of 21.2 dB on WSJ0-3mix and only 0.3 dB below the upper bound of 23.1 dB on WSJ0-2mix.


Cloud-based Automatic Speech Recognition Systems for Southeast Asian Languages

arXiv.org Artificial Intelligence

This paper provides an overall introduction of our Automatic Speech Recognition (ASR) systems for Southeast Asian languages. As not much existing work has been carried out on such regional languages, a few difficulties should be addressed before building the systems: limitation on speech and text resources, lack of linguistic knowledge, etc. This work takes Bahasa Indonesia and Thai as examples to illustrate the strategies of collecting various resources required for building ASR systems.


Learning Disentangled Representations for Counterfactual Regression via Mutual Information Minimization

arXiv.org Machine Learning

Learning individual-level treatment effect is a fundamental problem in causal inference and has received increasing attention in many areas, especially in the user growth area which concerns many internet companies. Recently, disentangled representation learning methods that decompose covariates into three latent factors, including instrumental, confounding and adjustment factors, have witnessed great success in treatment effect estimation. However, it remains an open problem how to learn the underlying disentangled factors precisely. Specifically, previous methods fail to obtain independent disentangled factors, which is a necessary condition for identifying treatment effect. In this paper, we propose Disentangled Representations for Counterfactual Regression via Mutual Information Minimization (MIM-DRCFR), which uses a multi-task learning framework to share information when learning the latent factors and incorporates MI minimization learning criteria to ensure the independence of these factors. Extensive experiments including public benchmarks and real-world industrial user growth datasets demonstrate that our method performs much better than state-of-the-art methods.


End-to-End Complex-Valued Multidilated Convolutional Neural Network for Joint Acoustic Echo Cancellation and Noise Suppression

arXiv.org Artificial Intelligence

Echo and noise suppression is an integral part of a full-duplex communication system. Many recent acoustic echo cancellation (AEC) systems rely on a separate adaptive filtering module for linear echo suppression and a neural module for residual echo suppression. However, not only do adaptive filtering modules require convergence and remain susceptible to changes in acoustic environments, but this two-stage framework also often introduces unnecessary delays to the AEC system when neural modules are already capable of both linear and nonlinear echo suppression. In this paper, we exploit the offset-compensating ability of complex time-frequency masks and propose an end-to-end complex-valued neural network architecture. The building block of the proposed model is a pseudocomplex extension based on the densely-connected multidilated DenseNet (D3Net) building block, resulting in a very small network of only 354K parameters. The architecture utilized the multi-resolution nature of the D3Net building blocks to eliminate the need for pooling, allowing the network to extract features using large receptive fields without any loss of output resolution. We also propose a dual-mask technique for joint echo and noise suppression with simultaneous speech enhancement. Evaluation on both synthetic and real test sets demonstrated promising results across multiple energy-based metrics and perceptual proxies.