Goto

Collaborating Authors

 Müller, Klaus-Robert


An XAI framework for robust and transparent data-driven wind turbine power curve models

arXiv.org Artificial Intelligence

Wind turbine power curve models translate ambient conditions into turbine power output. They are essential for energy yield prediction and turbine performance monitoring. In recent years, increasingly complex machine learning methods have become state-of-the-art for this task. Nevertheless, they frequently encounter criticism due to their apparent lack of transparency, which raises concerns regarding their performance in non-stationary environments, such as those faced by wind turbines. We, therefore, introduce an explainable artificial intelligence (XAI) framework to investigate and validate strategies learned by data-driven power curve models from operational wind turbine data. With the help of simple, physics-informed baseline models it enables an automated evaluation of machine learning models beyond standard error metrics. Alongside this novel tool, we present its efficacy for a more informed model selection. We show, for instance, that learned strategies can be meaningful indicators for a model's generalization ability in addition to test set errors, especially when only little data is available. Moreover, the approach facilitates an understanding of how decisions along the machine learning pipeline, such as data selection, pre-processing, or training parameters, affect learned strategies. In a practical example, we demonstrate the framework's utilisation to obtain more physically meaningful models, a prerequisite not only for robustness but also for insights into turbine operation by domain experts. The latter, we demonstrate in the context of wind turbine performance monitoring. Alongside this paper, we publish a Python implementation of the presented framework and hope this can guide researchers and practitioners alike toward training, selecting and utilizing more transparent and robust data-driven wind turbine power curve models.


DORA: Exploring Outlier Representations in Deep Neural Networks

arXiv.org Artificial Intelligence

Deep Neural Networks (DNNs) excel at learning complex abstractions within their internal representations. However, the concepts they learn remain opaque, a problem that becomes particularly acute when models unintentionally learn spurious correlations. In this work, we present DORA (Data-agnOstic Representation Analysis), the first data-agnostic framework for analyzing the representational space of DNNs. Central to our framework is the proposed Extreme-Activation (EA) distance measure, which assesses similarities between representations by analyzing their activation patterns on data points that cause the highest level of activation. As spurious correlations often manifest in features of data that are anomalous to the desired task, such as watermarks or artifacts, we demonstrate that internal representations capable of detecting such artifactual concepts can be found by analyzing relationships within neural representations. We validate the EA metric quantitatively, demonstrating its effectiveness both in controlled scenarios and real-world applications. Finally, we provide practical examples from popular Computer Vision models to illustrate that representations identified as outliers using the EA metric often correspond to undesired and spurious concepts.


Automatic Identification of Chemical Moieties

arXiv.org Artificial Intelligence

In recent years, the prediction of quantum mechanical observables with machine learning methods has become increasingly popular. Message-passing neural networks (MPNNs) solve this task by constructing atomic representations, from which the properties of interest are predicted. Here, we introduce a method to automatically identify chemical moieties (molecular building blocks) from such representations, enabling a variety of applications beyond property prediction, which otherwise rely on expert knowledge. The required representation can either be provided by a pretrained MPNN, or learned from scratch using only structural information. Beyond the data-driven design of molecular fingerprints, the versatility of our approach is demonstrated by enabling the selection of representative entries in chemical databases, the automatic construction of coarse-grained force fields, as well as the identification of reaction coordinates.


Reconstructing Kernel-based Machine Learning Force Fields with Super-linear Convergence

arXiv.org Artificial Intelligence

Kernel machines have sustained continuous progress in the field of quantum chemistry. In particular, they have proven to be successful in the low-data regime of force field reconstruction. This is because many equivariances and invariances due to physical symmetries can be incorporated into the kernel function to compensate for much larger datasets. So far, the scalability of kernel machines has however been hindered by its quadratic memory and cubical runtime complexity in the number of training points. While it is known, that iterative Krylov subspace solvers can overcome these burdens, their convergence crucially relies on effective preconditioners, which are elusive in practice. Effective preconditioners need to partially pre-solve the learning problem in a computationally cheap and numerically robust manner. Here, we consider the broad class of Nystr\"om-type methods to construct preconditioners based on successively more sophisticated low-rank approximations of the original kernel matrix, each of which provides a different set of computational trade-offs. All considered methods aim to identify a representative subset of inducing (kernel) columns to approximate the dominant kernel spectrum.


Mark My Words: Dangers of Watermarked Images in ImageNet

arXiv.org Artificial Intelligence

The utilization of pre-trained networks, especially those trained on ImageNet, has become a common practice in Computer Vision. However, prior research has indicated that a significant number of images in the ImageNet dataset contain watermarks, making pre-trained networks susceptible to learning artifacts such as watermark patterns within their latent spaces. In this paper, we aim to assess the extent to which popular pre-trained architectures display such behavior and to determine which classes are most affected. Additionally, we examine the impact of watermarks on the extracted features. Contrary to the popular belief that the Chinese logographic watermarks impact the "carton" class only, our analysis reveals that a variety of ImageNet classes, such as "monitor", "broom", "apron" and "safe" rely on spurious correlations. Finally, we propose a simple approach to mitigate this issue in fine-tuned networks by ignoring the encodings from the feature-extractor layer of ImageNet pre-trained networks that are most susceptible to watermark imprints.


Software for Dataset-wide XAI: From Local Explanations to Global Insights with Zennit, CoRelAy, and ViRelAy

arXiv.org Artificial Intelligence

Deep Neural Networks (DNNs) are known to be strong predictors, but their prediction strategies can rarely be understood. With recent advances in Explainable Artificial Intelligence (XAI), approaches are available to explore the reasoning behind those complex models' predictions. Among post-hoc attribution methods, Layer-wise Relevance Propagation (LRP) shows high performance. For deeper quantitative analysis, manual approaches exist, but without the right tools they are unnecessarily labor intensive. In this software paper, we introduce three software packages targeted at scientists to explore model reasoning using attribution approaches and beyond: (1) Zennit - a highly customizable and intuitive attribution framework implementing LRP and related approaches in PyTorch, (2) CoRelAy - a framework to easily and quickly construct quantitative analysis pipelines for dataset-wide analyses of explanations, and (3) ViRelAy - a web-application to interactively explore data, attributions, and analysis results. With this, we provide a standardized implementation solution for XAI, to contribute towards more reproducibility in our field.


So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems

arXiv.org Artificial Intelligence

The application of machine learning methods in quantum chemistry has enabled the study of numerous chemical phenomena, which are computationally intractable with traditional ab-initio methods. However, some quantum mechanical properties of molecules and materials depend on non-local electronic effects, which are often neglected due to the difficulty of modeling them efficiently. This work proposes a modified attention mechanism adapted to the underlying physics, which allows to recover the relevant non-local effects. Namely, we introduce spherical harmonic coordinates (SPHCs) to reflect higher-order geometric information for each atom in a molecule, enabling a non-local formulation of attention in the SPHC space. Our proposed model So3krates - a self-attention based message passing neural network - uncouples geometric information from atomic features, making them independently amenable to attention mechanisms. Thereby we construct spherical filters, which extend the concept of continuous filters in Euclidean space to SPHC space and serve as foundation for a spherical self-attention mechanism. We show that in contrast to other published methods, So3krates is able to describe non-local quantum mechanical effects over arbitrary length scales. Further, we find evidence that the inclusion of higher-order geometric correlations increases data efficiency and improves generalization. So3krates matches or exceeds state-of-the-art performance on popular benchmarks, notably, requiring a significantly lower number of parameters (0.25 - 0.4x) while at the same time giving a substantial speedup (6 - 14x for training and 2 - 11x for inference) compared to other models.


Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces

arXiv.org Artificial Intelligence

Explainable AI transforms opaque decision strategies of ML models into explanations that are interpretable by the user, for example, identifying the contribution of each input feature to the prediction at hand. Such explanations, however, entangle the potentially multiple factors that enter into the overall complex decision strategy. We propose to disentangle explanations by finding relevant subspaces in activation space that can be mapped to more abstract human-understandable concepts and enable a joint attribution on concepts and input features. To automatically extract the desired representation, we propose new subspace analysis formulations that extend the principle of PCA and subspace analysis to explanations. These novel analyses, which we call principal relevant component analysis (PRCA) and disentangled relevant subspace analysis (DRSA), optimize relevance of projected activations rather than the more traditional variance or kurtosis. This enables a much stronger focus on subspaces that are truly relevant for the prediction and the explanation, in particular, ignoring activations or concepts to which the prediction model is invariant. Our approach is general enough to work alongside common attribution techniques such as Shapley Value, Integrated Gradients, or LRP. Our proposed methods show to be practically useful and compare favorably to the state of the art as demonstrated on benchmarks and three use cases.


Shortcomings of Top-Down Randomization-Based Sanity Checks for Evaluations of Deep Neural Network Explanations

arXiv.org Artificial Intelligence

While the evaluation of explanations is an important step towards trustworthy models, it needs to be done carefully, and the employed metrics need to be well-understood. Specifically model randomization testing is often overestimated and regarded as a sole criterion for selecting or discarding certain explanation methods. To address shortcomings of this test, we start by observing an experimental gap in the ranking of explanation methods between randomization-based sanity checks [1] and model output faithfulness measures (e.g. [25]). We identify limitations of model-randomization-based sanity checks for the purpose of evaluating explanations. Firstly, we show that uninformative attribution maps created with zero pixel-wise covariance easily achieve high scores in this type of checks. Secondly, we show that top-down model randomization preserves scales of forward pass activations with high probability. That is, channels with large activations have a high probility to contribute strongly to the output, even after randomization of the network on top of them. Hence, explanations after randomization can only be expected to differ to a certain extent. This explains the observed experimental gap. In summary, these results demonstrate the inadequacy of model-randomization-based sanity checks as a criterion to rank attribution methods.


Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images

arXiv.org Artificial Intelligence

Due to the intractability of characterizing everything that looks unlike the normal data, anomaly detection (AD) is traditionally treated as an unsupervised problem utilizing only normal samples. However, it has recently been found that unsupervised image AD can be drastically improved through the utilization of huge corpora of random images to represent anomalousness; a technique which is known as Outlier Exposure. In this paper we show that specialized AD learning methods seem unnecessary for state-of-the-art performance, and furthermore one can achieve strong performance with just a small collection of Outlier Exposure data, contradicting common assumptions in the field of AD. We find that standard classifiers and semi-supervised one-class methods trained to discern between normal samples and relatively few random natural images are able to outperform the current state of the art on an established AD benchmark with ImageNet. Further experiments reveal that even one well-chosen outlier sample is sufficient to achieve decent performance on this benchmark (79.3% AUC). We investigate this phenomenon and find that one-class methods are more robust to the choice of training outliers, indicating that there are scenarios where these are still more useful than standard classifiers. Additionally, we include experiments that delineate the scenarios where our results hold. Lastly, no training samples are necessary when one uses the representations learned by CLIP, a recent foundation model, which achieves state-of-the-art AD results on CIFAR-10 and ImageNet in a zero-shot setting.