Lyu, Chenyang
Beyond Probabilities: Unveiling the Misalignment in Evaluating Large Language Models
Lyu, Chenyang, Wu, Minghao, Aji, Alham Fikri
Large Language Models (LLMs) have demonstrated remarkable capabilities across various applications, fundamentally reshaping the landscape of natural language processing (NLP) research. However, recent evaluation frameworks often rely on the output probabilities of LLMs for predictions, primarily due to computational constraints, diverging from real-world LLM usage scenarios. While widely employed, the efficacy of these probability-based evaluation strategies remains an open research question. This study aims to scrutinize the validity of such probability-based evaluation methods within the context of using LLMs for Multiple Choice Questions (MCQs), highlighting their inherent limitations. Our empirical investigation reveals that the prevalent probability-based evaluation method inadequately aligns with generation-based prediction. Furthermore, current evaluation frameworks typically assess LLMs through predictive tasks based on output probabilities rather than directly generating responses, owing to computational limitations. We illustrate that these probability-based approaches do not effectively correspond with generative predictions. The outcomes of our study can enhance the understanding of LLM evaluation methodologies and provide insights for future research in this domain.
CVQA: Culturally-diverse Multilingual Visual Question Answering Benchmark
Romero, David, Lyu, Chenyang, Wibowo, Haryo Akbarianto, Lynn, Teresa, Hamed, Injy, Kishore, Aditya Nanda, Mandal, Aishik, Dragonetti, Alina, Abzaliev, Artem, Tonja, Atnafu Lambebo, Balcha, Bontu Fufa, Whitehouse, Chenxi, Salamea, Christian, Velasco, Dan John, Adelani, David Ifeoluwa, Meur, David Le, Villa-Cueva, Emilio, Koto, Fajri, Farooqui, Fauzan, Belcavello, Frederico, Batnasan, Ganzorig, Vallejo, Gisela, Caulfield, Grainne, Ivetta, Guido, Song, Haiyue, Ademtew, Henok Biadglign, Maina, Hernán, Lovenia, Holy, Azime, Israel Abebe, Cruz, Jan Christian Blaise, Gala, Jay, Geng, Jiahui, Ortiz-Barajas, Jesus-German, Baek, Jinheon, Dunstan, Jocelyn, Alemany, Laura Alonso, Nagasinghe, Kumaranage Ravindu Yasas, Benotti, Luciana, D'Haro, Luis Fernando, Viridiano, Marcelo, Estecha-Garitagoitia, Marcos, Cabrera, Maria Camila Buitrago, Rodríguez-Cantelar, Mario, Jouitteau, Mélanie, Mihaylov, Mihail, Imam, Mohamed Fazli Mohamed, Adilazuarda, Muhammad Farid, Gochoo, Munkhjargal, Otgonbold, Munkh-Erdene, Etori, Naome, Niyomugisha, Olivier, Silva, Paula Mónica, Chitale, Pranjal, Dabre, Raj, Chevi, Rendi, Zhang, Ruochen, Diandaru, Ryandito, Cahyawijaya, Samuel, Góngora, Santiago, Jeong, Soyeong, Purkayastha, Sukannya, Kuribayashi, Tatsuki, Jayakumar, Thanmay, Torrent, Tiago Timponi, Ehsan, Toqeer, Araujo, Vladimir, Kementchedjhieva, Yova, Burzo, Zara, Lim, Zheng Wei, Yong, Zheng Xin, Ignat, Oana, Nwatu, Joan, Mihalcea, Rada, Solorio, Thamar, Aji, Alham Fikri
Visual Question Answering (VQA) is an important task in multimodal AI, and it is often used to test the ability of vision-language models to understand and reason on knowledge present in both visual and textual data. However, most of the current VQA models use datasets that are primarily focused on English and a few major world languages, with images that are typically Western-centric. While recent efforts have tried to increase the number of languages covered on VQA datasets, they still lack diversity in low-resource languages. More importantly, although these datasets often extend their linguistic range via translation or some other approaches, they usually keep images the same, resulting in narrow cultural representation. To address these limitations, we construct CVQA, a new Culturally-diverse multilingual Visual Question Answering benchmark, designed to cover a rich set of languages and cultures, where we engage native speakers and cultural experts in the data collection process. As a result, CVQA includes culturally-driven images and questions from across 28 countries on four continents, covering 26 languages with 11 scripts, providing a total of 9k questions. We then benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models. This benchmark can serve as a probing evaluation suite for assessing the cultural capability and bias of multimodal models and hopefully encourage more research efforts toward increasing cultural awareness and linguistic diversity in this field.
Can a Multichoice Dataset be Repurposed for Extractive Question Answering?
Lynn, Teresa, Altakrori, Malik H., Magdy, Samar Mohamed, Das, Rocktim Jyoti, Lyu, Chenyang, Nasr, Mohamed, Samih, Younes, Aji, Alham Fikri, Nakov, Preslav, Godbole, Shantanu, Roukos, Salim, Florian, Radu, Habash, Nizar
The rapid evolution of Natural Language Processing (NLP) has favored major languages such as English, leaving a significant gap for many others due to limited resources. This is especially evident in the context of data annotation, a task whose importance cannot be underestimated, but which is time-consuming and costly. Thus, any dataset for resource-poor languages is precious, in particular when it is task-specific. Here, we explore the feasibility of repurposing existing datasets for a new NLP task: we repurposed the Belebele dataset (Bandarkar et al., 2023), which was designed for multiple-choice question answering (MCQA), to enable extractive QA (EQA) in the style of machine reading comprehension. We present annotation guidelines and a parallel EQA dataset for English and Modern Standard Arabic (MSA). We also present QA evaluation results for several monolingual and cross-lingual QA pairs including English, MSA, and five Arabic dialects. Our aim is to enable others to adapt our approach for the 120+ other language variants in Belebele, many of which are deemed under-resourced. We also conduct a thorough analysis and share our insights from the process, which we hope will contribute to a deeper understanding of the challenges and the opportunities associated with task reformulation in NLP research.
A Comprehensive Evaluation of GPT-4V on Knowledge-Intensive Visual Question Answering
Li, Yunxin, Wang, Longyue, Hu, Baotian, Chen, Xinyu, Zhong, Wanqi, Lyu, Chenyang, Wang, Wei, Zhang, Min
The emergence of multimodal large models (MLMs) has significantly advanced the field of visual understanding, offering remarkable capabilities in the realm of visual question answering (VQA). Yet, the true challenge lies in the domain of knowledge-intensive VQA tasks, which necessitate not just recognition of visual elements, but also a deep comprehension of the visual information in conjunction with a vast repository of learned knowledge. To uncover such capabilities of MLMs, particularly the newly introduced GPT-4V, we provide an in-depth evaluation from three perspectives: 1) Commonsense Knowledge, which assesses how well models can understand visual cues and connect to general knowledge; 2) Fine-grained World Knowledge, which tests the model's skill in reasoning out specific knowledge from images, showcasing their proficiency across various specialized fields; 3) Comprehensive Knowledge with Decision-making Rationales, which examines model's capability to provide logical explanations for its inference, facilitating a deeper analysis from the interpretability perspective. Extensive experiments indicate that GPT-4V achieves SOTA performance on above three tasks. Interestingly, we find that: a) GPT-4V demonstrates enhanced reasoning and explanation when using composite images as few-shot; b) GPT-4V produces severe hallucinations when dealing with world knowledge, highlighting the future need for advancements in this research direction.
Retrieval-augmented Multi-modal Chain-of-Thoughts Reasoning for Large Language Models
Liu, Bingshuai, Lyu, Chenyang, Min, Zijun, Wang, Zhanyu, Su, Jinsong, Wang, Longyue
The advancement of Large Language Models (LLMs) has brought substantial attention to the Chain of Thought (CoT) approach Wei et al. [2022a], primarily due to its ability to enhance the capability of LLMs on tasks requiring complex reasoning. Moreover, the significance of CoT approaches extends to the application of LLMs for multi-modal tasks, such as multi-modal question answering. However, the selection of optimal CoT demonstration examples in multi-modal reasoning for LLMs remains less explored for LLMs due to the inherent complexity of multi-modal examples. In this paper, we introduce a novel approach that addresses this challenge by using retrieval mechanisms to dynamically and automatically select demonstration examples based on cross-modal similarities. This method aims to refine the CoT reasoning process in multi-modal scenarios via informing LLMs with more relevant and informative examples. Furthermore, we employ a stratified sampling method categorising demonstration examples into groups based on their types and retrieving examples from different groups respectively to promote the diversity of demonstration examples. Through a series of experiments, we demonstrate that our approach significantly improves the performance of LLMs, achieving state-of-the-art results in multi-modal reasoning tasks. Specifically, our methods demonstrate significant advancements on the ScienceQA dataset. While our method based on ChatGPT outperforms the Chameleon (ChatGPT) by 2.74% with an accuracy of 82.67%, the GPT4-based approach surpasses the Chameleon (GPT-4) by 0.89%, achieving 87.43% on accuracy under the same setting.
Findings of the WMT 2023 Shared Task on Discourse-Level Literary Translation: A Fresh Orb in the Cosmos of LLMs
Wang, Longyue, Tu, Zhaopeng, Gu, Yan, Liu, Siyou, Yu, Dian, Ma, Qingsong, Lyu, Chenyang, Zhou, Liting, Liu, Chao-Hong, Ma, Yufeng, Chen, Weiyu, Graham, Yvette, Webber, Bonnie, Koehn, Philipp, Way, Andy, Yuan, Yulin, Shi, Shuming
Translating literary works has perennially stood as an elusive dream in machine translation (MT), a journey steeped in intricate challenges. To foster progress in this domain, we hold a new shared task at WMT 2023, the first edition of the Discourse-Level Literary Translation. First, we (Tencent AI Lab and China Literature Ltd.) release a copyrighted and document-level Chinese-English web novel corpus. Furthermore, we put forth an industry-endorsed criteria to guide human evaluation process. This year, we totally received 14 submissions from 7 academia and industry teams. We employ both automatic and human evaluations to measure the performance of the submitted systems. The official ranking of the systems is based on the overall human judgments. In addition, our extensive analysis reveals a series of interesting findings on literary and discourse-aware MT. We release data, system outputs, and leaderboard at http://www2.statmt.org/wmt23/literary-translation-task.html.
Document-Level Machine Translation with Large Language Models
Wang, Longyue, Lyu, Chenyang, Ji, Tianbo, Zhang, Zhirui, Yu, Dian, Shi, Shuming, Tu, Zhaopeng
Large language models (LLMs) such as ChatGPT can produce coherent, cohesive, relevant, and fluent answers for various natural language processing (NLP) tasks. Taking document-level machine translation (MT) as a testbed, this paper provides an in-depth evaluation of LLMs' ability on discourse modeling. The study focuses on three aspects: 1) Effects of Context-Aware Prompts, where we investigate the impact of different prompts on document-level translation quality and discourse phenomena; 2) Comparison of Translation Models, where we compare the translation performance of ChatGPT with commercial MT systems and advanced document-level MT methods; 3) Analysis of Discourse Modelling Abilities, where we further probe discourse knowledge encoded in LLMs and shed light on impacts of training techniques on discourse modeling. By evaluating on a number of benchmarks, we surprisingly find that LLMs have demonstrated superior performance and show potential to become a new paradigm for document-level translation: 1) leveraging their powerful long-text modeling capabilities, GPT-3.5 and GPT-4 outperform commercial MT systems in terms of human evaluation; 2) GPT-4 demonstrates a stronger ability for probing linguistic knowledge than GPT-3.5. This work highlights the challenges and opportunities of LLMs for MT, which we hope can inspire the future design and evaluation of LLMs.We release our data and annotations at https://github.com/longyuewangdcu/Document-MT-LLM.
On the Cultural Gap in Text-to-Image Generation
Liu, Bingshuai, Wang, Longyue, Lyu, Chenyang, Zhang, Yong, Su, Jinsong, Shi, Shuming, Tu, Zhaopeng
One challenge in text-to-image (T2I) generation is the inadvertent reflection of culture gaps present in the training data, which signifies the disparity in generated image quality when the cultural elements of the input text are rarely collected in the training set. Although various T2I models have shown impressive but arbitrary examples, there is no benchmark to systematically evaluate a T2I model's ability to generate cross-cultural images. To bridge the gap, we propose a Challenging Cross-Cultural (C3) benchmark with comprehensive evaluation criteria, which can assess how well-suited a model is to a target culture. By analyzing the flawed images generated by the Stable Diffusion model on the C3 benchmark, we find that the model often fails to generate certain cultural objects. Accordingly, we propose a novel multi-modal metric that considers object-text alignment to filter the fine-tuning data in the target culture, which is used to fine-tune a T2I model to improve cross-cultural generation. Experimental results show that our multi-modal metric provides stronger data selection performance on the C3 benchmark than existing metrics, in which the object-text alignment is crucial. We release the benchmark, data, code, and generated images to facilitate future research on culturally diverse T2I generation (https://github.com/longyuewangdcu/C3-Bench).
Macaw-LLM: Multi-Modal Language Modeling with Image, Audio, Video, and Text Integration
Lyu, Chenyang, Wu, Minghao, Wang, Longyue, Huang, Xinting, Liu, Bingshuai, Du, Zefeng, Shi, Shuming, Tu, Zhaopeng
Although instruction-tuned large language models (LLMs) have exhibited remarkable capabilities across various NLP tasks, their effectiveness on other data modalities beyond text has not been fully studied. In this work, we propose Macaw-LLM, a novel multi-modal LLM that seamlessly integrates visual, audio, and textual information. Macaw-LLM consists of three main components: a modality module for encoding multi-modal data, a cognitive module for harnessing pretrained LLMs, and an alignment module for harmonizing diverse representations. Our novel alignment module seamlessly bridges multi-modal features to textual features, simplifying the adaptation process from the modality modules to the cognitive module. In addition, we construct a large-scale multi-modal instruction dataset in terms of multi-turn dialogue, including 69K image instances and 50K video instances. We have made our data, code and model publicly available, which we hope can pave the way for future research in multi-modal LLMs and expand the capabilities of LLMs to handle diverse data modalities and address complex real-world scenarios.
Out-of-Distribution Generalization in Text Classification: Past, Present, and Future
Yang, Linyi, Song, Yaoxiao, Ren, Xuan, Lyu, Chenyang, Wang, Yidong, Liu, Lingqiao, Wang, Jindong, Foster, Jennifer, Zhang, Yue
Machine learning (ML) systems in natural language processing (NLP) face significant challenges in generalizing to out-of-distribution (OOD) data, where the test distribution differs from the training data distribution. This poses important questions about the robustness of NLP models and their high accuracy, which may be artificially inflated due to their underlying sensitivity to systematic biases. Despite these challenges, there is a lack of comprehensive surveys on the generalization challenge from an OOD perspective in text classification. Therefore, this paper aims to fill this gap by presenting the first comprehensive review of recent progress, methods, and evaluations on this topic. We furth discuss the challenges involved and potential future research directions. By providing quick access to existing work, we hope this survey will encourage future research in this area.