Not enough data to create a plot.
Try a different view from the menu above.
Luo, Zhuang
From Critique to Clarity: A Pathway to Faithful and Personalized Code Explanations with Large Language Models
Xu, Zexing, Luo, Zhuang, Li, Yichuan, Lee, Kyumin, Etesami, S. Rasoul
In the realm of software development, providing accurate and personalized code explanations is crucial for both technical professionals and business stakeholders. Technical professionals benefit from enhanced understanding and improved problem-solving skills, while business stakeholders gain insights into project alignments and transparency. Despite the potential, generating such explanations is often time-consuming and challenging. This paper presents an innovative approach that leverages the advanced capabilities of large language models (LLMs) to generate faithful and personalized code explanations. Our methodology integrates prompt enhancement, self-correction mechanisms, personalized content customization, and interaction with external tools, facilitated by collaboration among multiple LLM agents. We evaluate our approach using both automatic and human assessments, demonstrating that our method not only produces accurate explanations but also tailors them to individual user preferences. Our findings suggest that this approach significantly improves the quality and relevance of code explanations, offering a valuable tool for developers and stakeholders alike.
Automated Feedback in Math Education: A Comparative Analysis of LLMs for Open-Ended Responses
Baral, Sami, Worden, Eamon, Lim, Wen-Chiang, Luo, Zhuang, Santorelli, Christopher, Gurung, Ashish, Heffernan, Neil
The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research has explored methodologies to enhance the effectiveness of feedback. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated feedback systems. This study aims to explore the potential of LLMs in facilitating automated feedback in math education. We examine the effectiveness of LLMs in evaluating student responses by comparing 3 different models: Llama, SBERT-Canberra, and GPT4 model. The evaluation requires the model to provide both a quantitative score and qualitative feedback on the student's responses to open-ended math problems. We employ Mistral, a version of Llama catered to math, and fine-tune this model for evaluating student responses by leveraging a dataset of student responses and teacher-written feedback for middle-school math problems. A similar approach was taken for training the SBERT model as well, while the GPT4 model used a zero-shot learning approach. We evaluate the model's performance in scoring accuracy and the quality of feedback by utilizing judgments from 2 teachers. The teachers utilized a shared rubric in assessing the accuracy and relevance of the generated feedback. We conduct both quantitative and qualitative analyses of the model performance. By offering a detailed comparison of these methods, this study aims to further the ongoing development of automated feedback systems and outlines potential future directions for leveraging generative LLMs to create more personalized learning experiences.