Goto

Collaborating Authors

 Luo, Haipeng


Taking a hint: How to leverage loss predictors in contextual bandits?

arXiv.org Machine Learning

We initiate the study of learning in contextual bandits with the help of loss predictors. The main question we address is whether one can improve over the minimax regret $\mathcal{O}(\sqrt{T})$ for learning over $T$ rounds, when the total error of the predictor $\mathcal{E} \leq T$ is relatively small. We provide a complete answer to this question, including upper and lower bounds for various settings: adversarial versus stochastic environments, known versus unknown $\mathcal{E}$, and single versus multiple predictors. We show several surprising results, such as 1) the optimal regret is $\mathcal{O}(\min\{\sqrt{T}, \sqrt{\mathcal{E}}T^\frac{1}{4}\})$ when $\mathcal{E}$ is known, a sharp contrast to the standard and better bound $\mathcal{O}(\sqrt{\mathcal{E}})$ for non-contextual problems (such as multi-armed bandits); 2) the same bound cannot be achieved if $\mathcal{E}$ is unknown, but as a remedy, $\mathcal{O}(\sqrt{\mathcal{E}}T^\frac{1}{3})$ is achievable; 3) with $M$ predictors, a linear dependence on $M$ is necessary, even if logarithmic dependence is possible for non-contextual problems. We also develop several novel algorithmic techniques to achieve matching upper bounds, including 1) a key action remapping technique for optimal regret with known $\mathcal{E}$, 2) implementing Catoni's robust mean estimator efficiently via an ERM oracle leading to an efficient algorithm in the stochastic setting with optimal regret, 3) constructing an underestimator for $\mathcal{E}$ via estimating the histogram with bins of exponentially increasing size for the stochastic setting with unknown $\mathcal{E}$, and 4) a self-referential scheme for learning with multiple predictors, all of which might be of independent interest.


Efficient Second Order Online Learning by Sketching

Neural Information Processing Systems

We propose Sketched Online Newton (SON), an online second order learning algorithm that enjoys substantially improved regret guarantees for ill-conditioned data. SON is an enhanced version of the Online Newton Step, which, via sketching techniques enjoys a running time linear in the dimension and sketch size. We further develop sparse forms of the sketching methods (such as Oja's rule), making the computation linear in the sparsity of features. Together, the algorithm eliminates all computational obstacles in previous second order online learning approaches. Papers published at the Neural Information Processing Systems Conference.


Model-free Reinforcement Learning in Infinite-horizon Average-reward Markov Decision Processes

arXiv.org Artificial Intelligence

Model-free reinforcement learning is known to be memory and computation efficient and more amendable to large scale problems. In this paper, two model-free algorithms are introduced for learning infinite-horizon average-reward Markov Decision Processes (MDPs). The first algorithm reduces the problem to the discounted-reward version and achieves $\mathcal{O}(T^{2/3})$ regret after $T$ steps, under the minimal assumption of weakly communicating MDPs. The second algorithm makes use of recent advances in adaptive algorithms for adversarial multi-armed bandits and improves the regret to $\mathcal{O}(\sqrt{T})$, albeit with a stronger ergodic assumption. To the best of our knowledge, these are the first model-free algorithms with sub-linear regret (that is polynomial in all parameters) in the infinite-horizon average-reward setting.


Model selection for contextual bandits

arXiv.org Machine Learning

We introduce the problem of model selection for contextual bandits, wherein a learner must adapt to the complexity of the optimal policy while balancing exploration and exploitation. Our main result is a new model selection guarantee for linear contextual bandits. We work in the stochastic realizable setting with a sequence of nested linear policy classes of dimension $d_1 < d_2 < \ldots$, where the $m^\star$-th class contains the optimal policy, and we design an algorithm that achieves $\tilde{O}(T^{2/3}d^{1/3}_{m^\star})$ regret with no prior knowledge of the optimal dimension $d_{m^\star}$. The algorithm also achieves regret $\tilde{O}(T^{3/4} + \sqrt{Td_{m^\star}})$, which is optimal for $d_{m^{\star}}\geq{}\sqrt{T}$. This is the first contextual bandit model selection result with non-vacuous regret for all values of $d_{m^\star}$ and, to the best of our knowledge, is the first guarantee of its type in any contextual bandit setting. The core of the algorithm is a new estimator for the gap in best loss achievable by two linear policy classes, which we show admits a convergence rate faster than what is required to learn either class.


Equipping Experts/Bandits with Long-term Memory

arXiv.org Machine Learning

We propose the first reduction-based approach to obtaining long-term memory guarantees for online learning in the sense of Bousquet and Warmuth, 2002, by reducing the problem to achieving typical switching regret. Specifically, for the classical expert problem with $K$ actions and $T$ rounds, using our framework we develop various algorithms with a regret bound of order $\mathcal{O}(\sqrt{T(S\ln T + n \ln K)})$ compared to any sequence of experts with $S-1$ switches among $n \leq \min\{S, K\}$ distinct experts. In addition, by plugging specific adaptive algorithms into our framework we also achieve the best of both stochastic and adversarial environments simultaneously. This resolves an open problem of Warmuth and Koolen, 2014. Furthermore, we extend our results to the sparse multi-armed bandit setting and show both negative and positive results for long-term memory guarantees. As a side result, our lower bound also implies that sparse losses do not help improve the worst-case regret for contextual bandits, a sharp contrast with the non-contextual case.


Hypothesis Set Stability and Generalization

arXiv.org Machine Learning

We present an extensive study of generalization for data-dependent hypothesis sets. We give a general learning guarantee for data-dependent hypothesis sets based on a notion of transductive Rademacher complexity. Our main results are two generalization bounds for data-dependent hypothesis sets expressed in terms of a notion of hypothesis set stability and a notion of Rademacher complexity for data-dependent hypothesis sets that we introduce. These bounds admit as special cases both standard Rademacher complexity bounds and algorithm-dependent uniform stability bounds. We also illustrate the use of these learning bounds in the analysis of several scenarios.


A New Algorithm for Non-stationary Contextual Bandits: Efficient, Optimal, and Parameter-free

arXiv.org Machine Learning

We propose the first contextual bandit algorithm that is parameter-free, efficient, and optimal in terms of dynamic regret. Specifically, our algorithm achieves dynamic regret $\mathcal{O}(\min\{\sqrt{ST}, \Delta^{\frac{1}{3}}T^{\frac{2}{3}}\})$ for a contextual bandit problem with $T$ rounds, $S$ switches and $\Delta$ total variation in data distributions. Importantly, our algorithm is adaptive and does not need to know $S$ or $\Delta$ ahead of time, and can be implemented efficiently assuming access to an ERM oracle. Our results strictly improve the $\mathcal{O}(\min \{S^{\frac{1}{4}}T^{\frac{3}{4}}, \Delta^{\frac{1}{5}}T^{\frac{4}{5}}\})$ bound of (Luo et al., 2018), and greatly generalize and improve the $\mathcal{O}(\sqrt{ST})$ result of (Auer et al, 2018) that holds only for the two-armed bandit problem without contextual information. The key novelty of our algorithm is to introduce replay phases, in which the algorithm acts according to its previous decisions for a certain amount of time in order to detect non-stationarity while maintaining a good balance between exploration and exploitation.


Improved Path-length Regret Bounds for Bandits

arXiv.org Machine Learning

We study adaptive regret bounds in terms of the variation of the losses (the so-called path-length bounds) for both multi-armed bandit and more generally linear bandit. We first show that the seemingly suboptimal path-length bound of (Wei and Luo, 2018) is in fact not improvable for adaptive adversary. Despite this negative result, we then develop two new algorithms, one that strictly improves over (Wei and Luo, 2018) with a smaller path-length measure, and the other which improves over (Wei and Luo, 2018) for oblivious adversary when the path-length is large. Our algorithms are based on the well-studied optimistic mirror descent framework, but importantly with several novel techniques, including new optimistic predictions, a slight bias towards recently selected arms, and the use of a hybrid regularizer similar to that of (Bubeck et al., 2018). Furthermore, we extend our results to linear bandit by showing a reduction to obtaining dynamic regret for a full-information problem, followed by a further reduction to convex body chasing. We propose a simple greedy chasing algorithm for squared 2-norm, leading to new dynamic regret results and as a consequence the first path-length regret for general linear bandit as well.


Beating Stochastic and Adversarial Semi-bandits Optimally and Simultaneously

arXiv.org Machine Learning

We develop the first general semi-bandit algorithm that simultaneously achieves $\mathcal{O}(\log T)$ regret for stochastic environments and $\mathcal{O}(\sqrt{T})$ regret for adversarial environments without knowledge of the regime or the number of rounds $T$. The leading problem-dependent constants of our bounds are not only optimal in some worst-case sense studied previously, but also optimal for two concrete instances of semi-bandit problems. Our algorithm and analysis extend the recent work of (Zimmert & Seldin, 2019) for the special case of multi-armed bandit, but importantly requires a novel hybrid regularizer designed specifically for semi-bandit. Experimental results on synthetic data show that our algorithm indeed performs well uniformly over different environments. We finally provide a preliminary extension of our results to the full bandit feedback.


Efficient Online Portfolio with Logarithmic Regret

Neural Information Processing Systems

We study the decades-old problem of online portfolio management and propose the first algorithm with logarithmic regret that is not based on Cover's Universal Portfolio algorithm and admits much faster implementation. Specifically Universal Portfolio enjoys optimal regret $\mathcal{O}(N\ln T)$ for $N$ financial instruments over $T$ rounds, but requires log-concave sampling and has a large polynomial running time. Our algorithm, on the other hand, ensures a slightly larger but still logarithmic regret of $\mathcal{O}(N^2(\ln T)^4)$, and is based on the well-studied Online Mirror Descent framework with a novel regularizer that can be implemented via standard optimization methods in time $\mathcal{O}(TN^{2.5})$ per round. The regret of all other existing works is either polynomial in $T$ or has a potentially unbounded factor such as the inverse of the smallest price relative.