Plotting

 Luo, Cheng


Boosting Adversarial Transferability across Model Genus by Deformation-Constrained Warping

arXiv.org Artificial Intelligence

Adversarial examples generated by a surrogate model typically exhibit limited transferability to unknown target systems. To address this problem, many transferability enhancement approaches (e.g., input transformation and model augmentation) have been proposed. However, they show poor performances in attacking systems having different model genera from the surrogate model. In this paper, we propose a novel and generic attacking strategy, called Deformation-Constrained Warping Attack (DeCoWA), that can be effectively applied to cross model genus attack. Specifically, DeCoWA firstly augments input examples via an elastic deformation, namely Deformation-Constrained Warping (DeCoW), to obtain rich local details of the augmented input. To avoid severe distortion of global semantics led by random deformation, DeCoW further constrains the strength and direction of the warping transformation by a novel adaptive control strategy. Extensive experiments demonstrate that the transferable examples crafted by our DeCoWA on CNN surrogates can significantly hinder the performance of Transformers (and vice versa) on various tasks, including image classification, video action recognition, and audio recognition. Code is made available at https://github.com/LinQinLiang/DeCoWA.


IEKM: A Model Incorporating External Keyword Matrices

arXiv.org Artificial Intelligence

A customer service platform system with a core text semantic similarity (STS) task faces two urgent challenges: Firstly, one platform system needs to adapt to different domains of customers, i.e., different domains adaptation (DDA). Secondly, it is difficult for the model of the platform system to distinguish sentence pairs that are literally close but semantically different, i.e., hard negative samples. In this paper, we propose an incorporation external keywords matrices model (IEKM) to address these challenges. The model uses external tools or dictionaries to construct external matrices and fuses them to the self-attention layers of the Transformer structure through gating units, thus enabling flexible corrections to the model results. We evaluate the method on multiple datasets and the results show that our method has improved performance on all datasets. To demonstrate that our method can effectively solve all the above challenges, we conduct a flexible correction experiment, which results in an increase in the F1 value from 56.61 to 73.53. Our code will be publicly available.


RTP: Rethinking Tensor Parallelism with Memory Deduplication

arXiv.org Artificial Intelligence

In the evolving landscape of neural network models, one prominent challenge stand out: the significant memory overheads associated with training expansive models. Addressing this challenge, this study delves deep into the Rotated Tensor Parallelism (RTP). RTP is an innovative approach that strategically focuses on memory deduplication in distributed training environments. It boasts of unique features like a customized communication primitive and the Flyweight Pattern initialization. Furthermore, RTP ensures a seamless overlap between partition computation and partition weight communication, optimizing the training process. Our empirical evaluations underscore RTP's efficiency, revealing that its memory consumption during distributed system training is remarkably close to the optimal - distributing the memory overhead of a single machine equitably among multiple machines. The experimental results demonstrate that RTP is capable of achieving comparable performance to Distributed Data Parallel while providing support for significantly larger models with near-linear scalability in terms of memory. Code of RTP is available at https://github.com/wdlctc/rtp.


CTP:A Causal Interpretable Model for Non-Communicable Disease Progression Prediction

arXiv.org Artificial Intelligence

Non-communicable disease is the leading cause of death, emphasizing the need for accurate prediction of disease progression and informed clinical decision-making. Machine learning (ML) models have shown promise in this domain by capturing non-linear patterns within patient features. However, existing ML-based models cannot provide causal interpretable predictions and estimate treatment effects, limiting their decision-making perspective. In this study, we propose a novel model called causal trajectory prediction (CTP) to tackle the limitation. The CTP model combines trajectory prediction and causal discovery to enable accurate prediction of disease progression trajectories and uncover causal relationships between features. By incorporating a causal graph into the prediction process, CTP ensures that ancestor features are not influenced by the treatment of descendant features, thereby enhancing the interpretability of the model. By estimating the bounds of treatment effects, even in the presence of unmeasured confounders, the CTP provides valuable insights for clinical decision-making. We evaluate the performance of the CTP using simulated and real medical datasets. Experimental results demonstrate that our model achieves satisfactory performance, highlighting its potential to assist clinical decisions. Source code is in \href{https://github.com/DanielSun94/CFPA}{here}.


Temporal Dynamic Synchronous Functional Brain Network for Schizophrenia Diagnosis and Lateralization Analysis

arXiv.org Artificial Intelligence

The available evidence suggests that dynamic functional connectivity (dFC) can capture time-varying abnormalities in brain activity in resting-state cerebral functional magnetic resonance imaging (rs-fMRI) data and has a natural advantage in uncovering mechanisms of abnormal brain activity in schizophrenia(SZ) patients. Hence, an advanced dynamic brain network analysis model called the temporal brain category graph convolutional network (Temporal-BCGCN) was employed. Firstly, a unique dynamic brain network analysis module, DSF-BrainNet, was designed to construct dynamic synchronization features. Subsequently, a revolutionary graph convolution method, TemporalConv, was proposed, based on the synchronous temporal properties of feature. Finally, the first modular abnormal hemispherical lateralization test tool in deep learning based on rs-fMRI data, named CategoryPool, was proposed. This study was validated on COBRE and UCLA datasets and achieved 83.62% and 89.71% average accuracies, respectively, outperforming the baseline model and other state-of-the-art methods. The ablation results also demonstrate the advantages of TemporalConv over the traditional edge feature graph convolution approach and the improvement of CategoryPool over the classical graph pooling approach. Interestingly, this study showed that the lower order perceptual system and higher order network regions in the left hemisphere are more severely dysfunctional than in the right hemisphere in SZ and reaffirms the importance of the left medial superior frontal gyrus in SZ. Our core code is available at: https://github.com/swfen/Temporal-BCGCN.


GRATIS: Deep Learning Graph Representation with Task-specific Topology and Multi-dimensional Edge Features

arXiv.org Artificial Intelligence

Graph is powerful for representing various types of real-world data. The topology (edges' presence) and edges' features of a graph decides the message passing mechanism among vertices within the graph. While most existing approaches only manually define a single-value edge to describe the connectivity or strength of association between a pair of vertices, task-specific and crucial relationship cues may be disregarded by such manually defined topology and single-value edge features. In this paper, we propose the first general graph representation learning framework (called GRATIS) which can generate a strong graph representation with a task-specific topology and task-specific multi-dimensional edge features from any arbitrary input. To learn each edge's presence and multi-dimensional feature, our framework takes both of the corresponding vertices pair and their global contextual information into consideration, enabling the generated graph representation to have a globally optimal message passing mechanism for different down-stream tasks. The principled investigation results achieved for various graph analysis tasks on 11 graph and non-graph datasets show that our GRATIS can not only largely enhance pre-defined graphs but also learns a strong graph representation for non-graph data, with clear performance improvements on all tasks. In particular, the learned topology and multi-dimensional edge features provide complementary task-related cues for graph analysis tasks. Our framework is effective, robust and flexible, and is a plug-and-play module that can be combined with different backbones and Graph Neural Networks (GNNs) to generate a task-specific graph representation from various graph and non-graph data. Our code is made publicly available at https://github.com/SSYSteve/Learning-Graph-Representation-with-Task-specific-Topology-and-Multi-dimensional-Edge-Features.


Prediction, Selection, and Generation: Exploration of Knowledge-Driven Conversation System

arXiv.org Artificial Intelligence

In open-domain conversational systems, it is important but challenging to leverage background knowledge. We can use the incorporation of knowledge to make the generation of dialogue controllable, and can generate more diverse sentences that contain real knowledge. In this paper, we combine the knowledge bases and pre-training model to propose a knowledge-driven conversation system. The system includes modules such as dialogue topic prediction, knowledge matching and dialogue generation. Based on this system, we study the performance factors that maybe affect the generation of knowledge-driven dialogue: topic coarse recall algorithm, number of knowledge choices, generation model choices, etc., and finally made the system reach state-of-the-art. These experimental results will provide some guiding significance for the future research of this task. As far as we know, this is the first work to study and analyze the effects of the related factors.


CrossoverScheduler: Overlapping Multiple Distributed Training Applications in a Crossover Manner

arXiv.org Artificial Intelligence

Distributed deep learning workloads include throughput-intensive training tasks on the GPU clusters, where the Distributed Stochastic Gradient Descent (SGD) incurs significant communication delays after backward propagation, forces workers to wait for the gradient synchronization via a centralized parameter server or directly in decentralized workers. We present CrossoverScheduler, an algorithm that enables communication cycles of a distributed training application to be filled by other applications through pipelining communication and computation. With CrossoverScheduler, the running performance of distributed training can be significantly improved without sacrificing convergence rate and network accuracy. We achieve so by introducing Crossover Synchronization which allows multiple distributed deep learning applications to time-share the same GPU alternately. The prototype of CrossoverScheduler is built and integrated with Horovod. Experiments on a variety of distributed tasks show that CrossoverScheduler achieves 20% \times speedup for image classification tasks on ImageNet dataset.


The Dependent Random Measures with Independent Increments in Mixture Models

arXiv.org Machine Learning

When observations are organized into groups where commonalties exist amongst them, the dependent random measures can be an ideal choice for modeling. One of the propositions of the dependent random measures is that the atoms of the posterior distribution are shared amongst groups, and hence groups can borrow information from each other. When normalized dependent random measures prior with independent increments are applied, we can derive appropriate exchangeable probability partition function (EPPF), and subsequently also deduce its inference algorithm given any mixture model likelihood. We provide all necessary derivation and solution to this framework. For demonstration, we used mixture of Gaussians likelihood in combination with a dependent structure constructed by linear combinations of CRMs. Our experiments show superior performance when using this framework, where the inferred values including the mixing weights and the number of clusters both respond appropriately to the number of completely random measure used.


Smoothed Hierarchical Dirichlet Process: A Non-Parametric Approach to Constraint Measures

arXiv.org Machine Learning

Time-varying mixture densities occur in many scenarios, for example, the distributions of keywords that appear in publications may evolve from year to year, video frame features associated with multiple targets may evolve in a sequence. Any models that realistically cater to this phenomenon must exhibit two important properties: the underlying mixture densities must have an unknown number of mixtures, and there must be some "smoothness" constraints in place for the adjacent mixture densities. The traditional Hierarchical Dirichlet Process (HDP) may be suited to the first property, but certainly not the second. This is due to how each random measure in the lower hierarchies is sampled independent of each other and hence does not facilitate any temporal correlations. To overcome such shortcomings, we proposed a new Smoothed Hierarchical Dirichlet Process (sHDP). The key novelty of this model is that we place a temporal constraint amongst the nearby discrete measures $\{G_j\}$ in the form of symmetric Kullback-Leibler (KL) Divergence with a fixed bound $B$. Although the constraint we place only involves a single scalar value, it nonetheless allows for flexibility in the corresponding successive measures. Remarkably, it also led us to infer the model within the stick-breaking process where the traditional Beta distribution used in stick-breaking is now replaced by a new constraint calculated from $B$. We present the inference algorithm and elaborate on its solutions. Our experiment using NIPS keywords has shown the desirable effect of the model.