Plotting

 Lundell, Jens


Grasping a Handful: Sequential Multi-Object Dexterous Grasp Generation

arXiv.org Artificial Intelligence

-- We introduce the sequential multi-object robotic grasp sampling algorithm SeqGrasp that can robustly synthesize stable grasps on diverse objects using the robotic hand's partial Degrees of Freedom (DoF). We use SeqGrasp to construct the large-scale Allegro Hand sequential grasping dataset SeqDataset and use it for training the diffusion-based sequential grasp generator SeqDiffuser . We experimentally evaluate SeqGrasp and SeqDiffuser against the state-of-the-art non-sequential multi-object grasp generation method Multi-Grasp in simulation and on a real robot. Furthermore, SeqDiffuser is approximately 1000 times faster at generating grasps than SeqGrasp and MultiGrasp. Generation of dexterous grasps has been studied for a long time, both from a technical perspective on generating grasps on robots [1]-[11] and understanding human grasping [12]- [15]. Most of these methods rely on bringing the robotic hand close to the object and then simultaneously enveloping it with all fingers. While this strategy often results in efficient and successful grasp generation, it simplifies dexterous grasping to resemble parallel-jaw grasping, thereby underutilizing the many DoF of multi-fingered robotic hands [10]. In contrast, grasping multiple objects with a robotic hand, particularly in a sequential manner that mirrors human-like dexterity, as shown in Figure 1, is still an unsolved problem. In this work, we introduce SeqGrasp, a novel hand-agnostic algorithm for generating sequential multi-object grasps.


Pushing Everything Everywhere All At Once: Probabilistic Prehensile Pushing

arXiv.org Artificial Intelligence

We address prehensile pushing, the problem of manipulating a grasped object by pushing against the environment. Our solution is an efficient nonlinear trajectory optimization problem relaxed from an exact mixed integer non-linear trajectory optimization formulation. The critical insight is recasting the external pushers (environment) as a discrete probability distribution instead of binary variables and minimizing the entropy of the distribution. The probabilistic reformulation allows all pushers to be used simultaneously, but at the optimum, the probability mass concentrates onto one due to the entropy minimization. We numerically compare our method against a state-of-the-art sampling-based baseline on a prehensile pushing task. The results demonstrate that our method finds trajectories 8 times faster and at a 20 times lower cost than the baseline. Finally, we demonstrate that a simulated and real Franka Panda robot can successfully manipulate different objects following the trajectories proposed by our method. Supplementary materials are available at https://probabilistic-prehensile-pushing.github.io/.


Cloth-Splatting: 3D Cloth State Estimation from RGB Supervision

arXiv.org Artificial Intelligence

Teaching robots to fold, drape, or manipulate deformable objects such as cloths is fundamental to unlock a variety of applications ranging from healthcare to domestic and industrial environments [1]. While considerable progress has been made in rigid-object manipulation, manipulating deformables poses unique challenges, including infinite-dimensional state spaces, complex physical dynamics, and state estimation of self-occluded configurations [2]. Specifically, the problem of state estimation has led existing works on visual manipulation to either rely exclusively on 2D images, overlooking the cloth's 3D structure [3, 4, 5], or to use 3D representations that neglect valuable information in RGB observations [6, 7, 8]. Prior work on cloth state estimation often relies on 3D particle-based representations derived from depth sensors, including graphs [9, 10] and point clouds [11]. While point clouds effectively capture the object's observable state, they lack comprehensive structural information [6].


A Riemannian Framework for Learning Reduced-order Lagrangian Dynamics

arXiv.org Artificial Intelligence

By incorporating physical consistency as inductive bias, deep neural networks display increased generalization capabilities and data efficiency in learning nonlinear dynamic models. However, the complexity of these models generally increases with the system dimensionality, requiring larger datasets, more complex deep networks, and significant computational effort. We propose a novel geometric network architecture to learn physically-consistent reduced-order dynamic parameters that accurately describe the original high-dimensional system behavior. This is achieved by building on recent advances in model-order reduction and by adopting a Riemannian perspective to jointly learn a non-linear structure-preserving latent space and the associated low-dimensional dynamics. Our approach enables accurate long-term predictions of the high-dimensional dynamics of rigid and deformable systems with increased data efficiency by inferring interpretable and physically plausible reduced Lagrangian models.


DexDiffuser: Generating Dexterous Grasps with Diffusion Models

arXiv.org Artificial Intelligence

We introduce DexDiffuser, a novel dexterous grasping method that generates, evaluates, and refines grasps on partial object point clouds. DexDiffuser includes the conditional diffusion-based grasp sampler DexSampler and the dexterous grasp evaluator DexEvaluator. DexSampler generates high-quality grasps conditioned on object point clouds by iterative denoising of randomly sampled grasps. We also introduce two grasp refinement strategies: Evaluator-Guided Diffusion (EGD) and Evaluator-based Sampling Refinement (ESR). Our simulation and real-world experiments on the Allegro Hand consistently demonstrate that DexDiffuser outperforms the state-of-the-art multi-finger grasp generation method FFHNet with an, on average, 21.71--22.20\% higher grasp success rate.


GoNet: An Approach-Constrained Generative Grasp Sampling Network

arXiv.org Artificial Intelligence

This work addresses the problem of learning approach-constrained data-driven grasp samplers. To this end, we propose GoNet: a generative grasp sampler that can constrain the grasp approach direction to a subset of SO(3). The key insight is to discretize SO(3) into a predefined number of bins and train GoNet to generate grasps whose approach directions are within those bins. At run-time, the bin aligning with the second largest principal component of the observed point cloud is selected. GoNet is benchmarked against GraspNet, a state-of-the-art unconstrained grasp sampler, in an unconfined grasping experiment in simulation and on an unconfined and confined grasping experiment in the real world. The results demonstrate that GoNet achieves higher success-over-coverage in simulation and a 12%-18% higher success rate in real-world table-picking and shelf-picking tasks than the baseline.


Constrained Generative Sampling of 6-DoF Grasps

arXiv.org Artificial Intelligence

Most state-of-the-art data-driven grasp sampling methods propose stable and collision-free grasps uniformly on the target object. For bin-picking, executing any of those reachable grasps is sufficient. However, for completing specific tasks, such as squeezing out liquid from a bottle, we want the grasp to be on a specific part of the object's body while avoiding other locations, such as the cap. This work presents a generative grasp sampling network, VCGS, capable of constrained 6 Degrees of Freedom (DoF) grasp sampling. In addition, we also curate a new dataset designed to train and evaluate methods for constrained grasping. The new dataset, called CONG, consists of over 14 million training samples of synthetically rendered point clouds and grasps at random target areas on 2889 objects. VCGS is benchmarked against GraspNet, a state-of-the-art unconstrained grasp sampler, in simulation and on a real robot. The results demonstrate that VCGS achieves a 10-15% higher grasp success rate than the baseline while being 2-3 times as sample efficient. Supplementary material is available on our project website.


Enabling Robot Manipulation of Soft and Rigid Objects with Vision-based Tactile Sensors

arXiv.org Artificial Intelligence

Endowing robots with tactile capabilities opens up new possibilities for their interaction with the environment, including the ability to handle fragile and/or soft objects. In this work, we equip the robot gripper with low-cost vision-based tactile sensors and propose a manipulation algorithm that adapts to both rigid and soft objects without requiring any knowledge of their properties. The algorithm relies on a touch and slip detection method, which considers the variation in the tactile images with respect to reference ones. We validate the approach on seven different objects, with different properties in terms of rigidity and fragility, to perform unplugging and lifting tasks. Furthermore, to enhance applicability, we combine the manipulation algorithm with a grasp sampler for the task of finding and picking a grape from a bunch without damaging~it.


Deformation-Aware Data-Driven Grasp Synthesis

arXiv.org Artificial Intelligence

Grasp synthesis for 3D deformable objects remains a little-explored topic, most works aiming to minimize deformations. However, deformations are not necessarily harmful -- humans are, for example, able to exploit deformations to generate new potential grasps. How to achieve that on a robot is though an open question. This paper proposes an approach that uses object stiffness information in addition to depth images for synthesizing high-quality grasps. We achieve this by incorporating object stiffness as an additional input to a state-of-the-art deep grasp planning network. We also curate a new synthetic dataset of grasps on objects of varying stiffness using the Isaac Gym simulator for training the network. We experimentally validate and compare our proposed approach against the case where we do not incorporate object stiffness on a total of 2800 grasps in simulation and 420 grasps on a real Franka Emika Panda. The experimental results show significant improvement in grasp success rate using the proposed approach on a wide range of objects with varying shapes, sizes, and stiffness. Furthermore, we demonstrate that the approach can generate different grasping strategies for different stiffness values, such as pinching for soft objects and caging for hard objects. Together, the results clearly show the value of incorporating stiffness information when grasping objects of varying stiffness.


DDGC: Generative Deep Dexterous Grasping in Clutter

arXiv.org Artificial Intelligence

Recent advances in multi-fingered robotic grasping have enabled fast 6-Degrees-Of-Freedom (DOF) single object grasping. Multi-finger grasping in cluttered scenes, on the other hand, remains mostly unexplored due to the added difficulty of reasoning over obstacles which greatly increases the computational time to generate high-quality collision-free grasps. In this work we address such limitations by introducing DDGC, a fast generative multi-finger grasp sampling method that can generate high quality grasps in cluttered scenes from a single RGB-D image. DDGC is built as a network that encodes scene information to produce coarse-to-fine collision-free grasp poses and configurations. We experimentally benchmark DDGC against the simulated-annealing planner in GraspIt! on 1200 simulated cluttered scenes and 7 real world scenes. The results show that DDGC outperforms the baseline on synthesizing high-quality grasps and removing clutter while being 5 times faster. This, in turn, opens up the door for using multi-finger grasps in practical applications which has so far been limited due to the excessive computation time needed by other methods.