Goto

Collaborating Authors

 Lukasiewicz, Thomas


Magic Inference Rules for Probabilistic Deduction under Taxonomic Knowledge

arXiv.org Artificial Intelligence

We present locally complete inference rules for probabilistic deduction from taxonomic and probabilistic knowledge-bases over conjunctive events. Crucially, in contrast to similar inference rules in the literature, our inference rules are locally complete for conjunctive events and under additional taxonomic knowledge. We discover that our inference rules are extremely complex and that it is at first glance not clear at all where the deduced tightest bounds come from. Moreover, analyzing the global completeness of our inference rules, we find examples of globally very incomplete probabilistic deductions. More generally, we even show that all systems of inference rules for taxonomic and probabilistic knowledge-bases over conjunctive events are globally incomplete. We conclude that probabilistic deduction by the iterative application of inference rules on interval restrictions for conditional probabilities, even though considered very promising in the literature so far, seems very limited in its field of application.


Probabilistic Logic Programming under Inheritance with Overriding

arXiv.org Artificial Intelligence

We present probabilistic logic programming under inheritance with overriding. This approach is based on new notions of entailment for reasoning with conditional constraints, which are obtained from the classical notion of logical entailment by adding the principle of inheritance with overriding. This is done by using recent approaches to probabilistic default reasoning with conditional constraints. We analyze the semantic properties of the new entailment relations. We also present algorithms for probabilistic logic programming under inheritance with overriding, and program transformations for an increased efficiency.


Causes and Explanations in the Structural-Model Approach: Tractable Cases

arXiv.org Artificial Intelligence

In this paper, we continue our research on the algorithmic aspects of Halpern and Pearl's causes and explanations in the structural-model approach. To this end, we present new characterizations of weak causes for certain classes of causal models, which show that under suitable restrictions deciding causes and explanations is tractable. To our knowledge, these are the first explicit tractability results for the structural-model approach.


Probabilistic Reasoning about Actions in Nonmonotonic Causal Theories

arXiv.org Artificial Intelligence

We present the language {m P}{cal C}+ for probabilistic reasoning about actions, which is a generalization of the action language {cal C}+ that allows to deal with probabilistic as well as nondeterministic effects of actions. We define a formal semantics of {m P}{cal C}+ in terms of probabilistic transitions between sets of states. Using a concept of a history and its belief state, we then show how several important problems in reasoning about actions can be concisely formulated in our formalism.


Structure-Based Causes and Explanations in the Independent Choice Logic

arXiv.org Artificial Intelligence

This paper is directed towards combining Pearl's structural-model approach to causal reasoning with high-level formalisms for reasoning about actions. More precisely, we present a combination of Pearl's structural-model approach with Poole's independent choice logic. We show how probabilistic theories in the independent choice logic can be mapped to probabilistic causal models. This mapping provides the independent choice logic with appealing concepts of causality and explanation from the structural-model approach. We illustrate this along Halpern and Pearl's sophisticated notions of actual cause, explanation, and partial explanation. This mapping also adds first-order modeling capabilities and explicit actions to the structural-model approach.


Equality-Friendly Well-Founded Semantics and Applications to Description Logics

AAAI Conferences

We tackle the problem of defining a well-founded semantics for Datalog rules with existentially quantified variables in their heads and negations in their bodies. In particular, we provide a well-founded semantics (WFS) for the recent Datalog+/- family of ontology languages, which covers several important description logics (DLs). To do so, we generalize Datalog+/- by non-stratified nonmonotonic negation in rule bodies, and we define a WFS for this generalization via guarded fixed-point logic. We refer to this approach as equality-friendly WFS, since it has the advantage that it does not make the unique name assumption (UNA); this brings it close to OWL and its profiles as well as typical DLs, which also do not make the UNA. We prove that for guarded Datalog+/- with negation under the equality-friendly WFS, conjunctive query answering is decidable, and we provide precise complexity results for this problem. From these results, we obtain precise definitions of the standard WFS extensions of EL and of members of the DL-Lite family, as well as corresponding complexity results for query answering.


Ontological Reasoning with F-logic Lite and its Extensions

AAAI Conferences

Answering queries posed over knowledge bases is a central problem in knowledge representation and database theory. In the database area, checking query containment is an important query optimization and schema integration technique. In knowledge representation it has been used for object classification, schema integration, service discovery, and more. In the presence of a knowledge base, the problem of query containment is strictly related to that of query answering; indeed, the two are reducible to each other; we focus on the latter, and our results immediately extend to the former.