Lu, Zhiyong
Quality of Answers of Generative Large Language Models vs Peer Patients for Interpreting Lab Test Results for Lay Patients: Evaluation Study
He, Zhe, Bhasuran, Balu, Jin, Qiao, Tian, Shubo, Hanna, Karim, Shavor, Cindy, Arguello, Lisbeth Garcia, Murray, Patrick, Lu, Zhiyong
Lab results are often confusing and hard to understand. Large language models (LLMs) such as ChatGPT have opened a promising avenue for patients to get their questions answered. We aim to assess the feasibility of using LLMs to generate relevant, accurate, helpful, and unharmful responses to lab test-related questions asked by patients and to identify potential issues that can be mitigated with augmentation approaches. We first collected lab test results related question and answer data from Yahoo! Answers and selected 53 QA pairs for this study. Using the LangChain framework and ChatGPT web portal, we generated responses to the 53 questions from four LLMs including GPT-4, Meta LLaMA 2, MedAlpaca, and ORCA_mini. We first assessed the similarity of their answers using standard QA similarity-based evaluation metrics including ROUGE, BLEU, METEOR, BERTScore. We also utilized an LLM-based evaluator to judge whether a target model has higher quality in terms of relevance, correctness, helpfulness, and safety than the baseline model. Finally, we performed a manual evaluation with medical experts for all the responses to seven selected questions on the same four aspects. The results of Win Rate and medical expert evaluation both showed that GPT-4's responses achieved better scores than all the other LLM responses and human responses on all four aspects (relevance, correctness, helpfulness, and safety). However, LLM responses occasionally also suffer from a lack of interpretation in one's medical context, incorrect statements, and lack of references. We find that compared to other three LLMs and human answer from the Q&A website, GPT-4's responses are more accurate, helpful, relevant, and safer. However, there are cases which GPT-4 responses are inaccurate and not individualized. We identified a number of ways to improve the quality of LLM responses.
PubTator 3.0: an AI-powered Literature Resource for Unlocking Biomedical Knowledge
Wei, Chih-Hsuan, Allot, Alexis, Lai, Po-Ting, Leaman, Robert, Tian, Shubo, Luo, Ling, Jin, Qiao, Wang, Zhizheng, Chen, Qingyu, Lu, Zhiyong
PubTator 3.0 (https://www.ncbi.nlm.nih.gov/research/pubtator3/) is a biomedical literature resource using state-of-the-art AI techniques to offer semantic and relation searches for key concepts like proteins, genetic variants, diseases, and chemicals. It currently provides over one billion entity and relation annotations across approximately 36 million PubMed abstracts and 6 million full-text articles from the PMC open access subset, updated weekly. PubTator 3.0's online interface and API utilize these precomputed entity relations and synonyms to provide advanced search capabilities and enable large-scale analyses, streamlining many complex information needs. We showcase the retrieval quality of PubTator 3.0 using a series of entity pair queries, demonstrating that PubTator 3.0 retrieves a greater number of articles than either PubMed or Google Scholar, with higher precision in the top 20 results. We further show that integrating ChatGPT (GPT-4) with PubTator APIs dramatically improves the factuality and verifiability of its responses. In summary, PubTator 3.0 offers a comprehensive set of features and tools that allow researchers to navigate the ever-expanding wealth of biomedical literature, expediting research and unlocking valuable insights for scientific discovery.
Ascle: A Python Natural Language Processing Toolkit for Medical Text Generation
Yang, Rui, Zeng, Qingcheng, You, Keen, Qiao, Yujie, Huang, Lucas, Hsieh, Chia-Chun, Rosand, Benjamin, Goldwasser, Jeremy, Dave, Amisha D, Keenan, Tiarnan D. L., Chew, Emily Y, Radev, Dragomir, Lu, Zhiyong, Xu, Hua, Chen, Qingyu, Li, Irene
This study introduces Ascle, a pioneering natural language processing (NLP) toolkit designed for medical text generation. Ascle is tailored for biomedical researchers and healthcare professionals with an easy-to-use, all-in-one solution that requires minimal programming expertise. For the first time, Ascle evaluates and provides interfaces for the latest pre-trained language models, encompassing four advanced and challenging generative functions: question-answering, text summarization, text simplification, and machine translation. In addition, Ascle integrates 12 essential NLP functions, along with query and search capabilities for clinical databases. The toolkit, its models, and associated data are publicly available via https://github.com/Yale-LILY/MedGen.
A scoping review on multimodal deep learning in biomedical images and texts
Sun, Zhaoyi, Lin, Mingquan, Zhu, Qingqing, Xie, Qianqian, Wang, Fei, Lu, Zhiyong, Peng, Yifan
Computer-assisted diagnostic and prognostic systems of the future should be capable of simultaneously processing multimodal data. Multimodal deep learning (MDL), which involves the integration of multiple sources of data, such as images and text, has the potential to revolutionize the analysis and interpretation of biomedical data. However, it only caught researchers' attention recently. To this end, there is a critical need to conduct a systematic review on this topic, identify the limitations of current work, and explore future directions. In this scoping review, we aim to provide a comprehensive overview of the current state of the field and identify key concepts, types of studies, and research gaps with a focus on biomedical images and texts joint learning, mainly because these two were the most commonly available data types in MDL research. This study reviewed the current uses of multimodal deep learning on five tasks: (1) Report generation, (2) Visual question answering, (3) Cross-modal retrieval, (4) Computer-aided diagnosis, and (5) Semantic segmentation. Our results highlight the diverse applications and potential of MDL and suggest directions for future research in the field. We hope our review will facilitate the collaboration of natural language processing (NLP) and medical imaging communities and support the next generation of decision-making and computer-assisted diagnostic system development.
Opportunities and Challenges for ChatGPT and Large Language Models in Biomedicine and Health
Tian, Shubo, Jin, Qiao, Yeganova, Lana, Lai, Po-Ting, Zhu, Qingqing, Chen, Xiuying, Yang, Yifan, Chen, Qingyu, Kim, Won, Comeau, Donald C., Islamaj, Rezarta, Kapoor, Aadit, Gao, Xin, Lu, Zhiyong
ChatGPT has drawn considerable attention from both the general public and domain experts with its remarkable text generation capabilities. This has subsequently led to the emergence of diverse applications in the field of biomedicine and health. In this work, we examine the diverse applications of large language models (LLMs), such as ChatGPT, in biomedicine and health. Specifically we explore the areas of biomedical information retrieval, question answering, medical text summarization, information extraction, and medical education, and investigate whether LLMs possess the transformative power to revolutionize these tasks or whether the distinct complexities of biomedical domain presents unique challenges. Following an extensive literature survey, we find that significant advances have been made in the field of text generation tasks, surpassing the previous state-of-the-art methods. For other applications, the advances have been modest. Overall, LLMs have not yet revolutionized biomedicine, but recent rapid progress indicates that such methods hold great potential to provide valuable means for accelerating discovery and improving health. We also find that the use of LLMs, like ChatGPT, in the fields of biomedicine and health entails various risks and challenges, including fabricated information in its generated responses, as well as legal and privacy concerns associated with sensitive patient data. We believe this survey can provide a comprehensive and timely overview to biomedical researchers and healthcare practitioners on the opportunities and challenges associated with using ChatGPT and other LLMs for transforming biomedicine and health.
Utilizing Longitudinal Chest X-Rays and Reports to Pre-Fill Radiology Reports
Zhu, Qingqing, Mathai, Tejas Sudharshan, Mukherjee, Pritam, Peng, Yifan, Summers, Ronald M., Lu, Zhiyong
Despite the reduction in turn-around times in radiology reports with the use of speech recognition software, persistent communication errors can significantly impact the interpretation of the radiology report. Pre-filling a radiology report holds promise in mitigating reporting errors, and despite efforts in the literature to generate medical reports, there exists a lack of approaches that exploit the longitudinal nature of patient visit records in the MIMIC-CXR dataset. To address this gap, we propose to use longitudinal multi-modal data, i.e., previous patient visit CXR, current visit CXR, and previous visit report, to pre-fill the 'findings' section of a current patient visit report. We first gathered the longitudinal visit information for 26,625 patients from the MIMIC-CXR dataset and created a new dataset called Longitudinal-MIMIC. With this new dataset, a transformer-based model was trained to capture the information from longitudinal patient visit records containing multi-modal data (CXR images + reports) via a cross-attention-based multi-modal fusion module and a hierarchical memory-driven decoder. In contrast to previous work that only uses current visit data as input to train a model, our work exploits the longitudinal information available to pre-fill the 'findings' section of radiology reports. Experiments show that our approach outperforms several recent approaches. Code will be published at https://github.com/CelestialShine/Longitudinal-Chest-X-Ray.
MedCPT: Contrastive Pre-trained Transformers with Large-scale PubMed Search Logs for Zero-shot Biomedical Information Retrieval
Jin, Qiao, Kim, Won, Chen, Qingyu, Comeau, Donald C., Yeganova, Lana, Wilbur, W. John, Lu, Zhiyong
Information retrieval (IR) is essential in biomedical knowledge acquisition and clinical decision support. While recent progress has shown that language model encoders perform better semantic retrieval, training such models requires abundant query-article annotations that are difficult to obtain in biomedicine. As a result, most biomedical IR systems only conduct lexical matching. In response, we introduce MedCPT, a first-of-its-kind Contrastively Pre-trained Transformer model for zero-shot semantic IR in biomedicine. To train MedCPT, we collected an unprecedented scale of 255 million user click logs from PubMed. With such data, we use contrastive learning to train a pair of closely-integrated retriever and re-ranker. Experimental results show that MedCPT sets new state-of-the-art performance on six biomedical IR tasks, outperforming various baselines including much larger models such as GPT-3-sized cpt-text-XL. In addition, MedCPT also generates better biomedical article and sentence representations for semantic evaluations. As such, MedCPT can be readily applied to various real-world biomedical IR tasks.
PubMed and Beyond: Biomedical Literature Search in the Age of Artificial Intelligence
Jin, Qiao, Leaman, Robert, Lu, Zhiyong
Biomedical research yields a wealth of information, much of which is only accessible through the literature. Consequently, literature search is an essential tool for building on prior knowledge in clinical and biomedical research. Although recent improvements in artificial intelligence have expanded functionality beyond keyword-based search, these advances may be unfamiliar to clinicians and researchers. In response, we present a survey of literature search tools tailored to both general and specific information needs in biomedicine, with the objective of helping readers efficiently fulfill their information needs. We first examine the widely used PubMed search engine, discussing recent improvements and continued challenges. We then describe literature search tools catering to five specific information needs: 1. Identifying high-quality clinical research for evidence-based medicine. 2. Retrieving gene-related information for precision medicine and genomics. 3. Searching by meaning, including natural language questions. 4. Locating related articles with literature recommendation. 5. Mining literature to discover associations between concepts such as diseases and genetic variants. Additionally, we cover practical considerations and best practices for choosing and using these tools. Finally, we provide a perspective on the future of literature search engines, considering recent breakthroughs in large language models such as ChatGPT. In summary, our survey provides a comprehensive view of biomedical literature search functionalities with 36 publicly available tools.
Matching Patients to Clinical Trials with Large Language Models
Jin, Qiao, Wang, Zifeng, Floudas, Charalampos S., Sun, Jimeng, Lu, Zhiyong
Clinical trials are vital in advancing drug development and evidence-based medicine, but their success is often hindered by challenges in patient recruitment. In this work, we investigate the potential of large language models (LLMs) to assist individual patients and referral physicians in identifying suitable clinical trials from an extensive selection. Specifically, we introduce TrialGPT, a novel architecture employing LLMs to predict criterion-level eligibility with detailed explanations, which are then aggregated for ranking and excluding candidate clinical trials based on free-text patient notes. We evaluate TrialGPT on three publicly available cohorts of 184 patients and 18,238 annotated clinical trials. The experimental results demonstrate several key findings: First, TrialGPT achieves high criterion-level prediction accuracy with faithful explanations. Second, the aggregated trial-level TrialGPT scores are highly correlated with expert eligibility annotations. Third, these scores prove effective in ranking clinical trials and exclude ineligible candidates. Our error analysis suggests that current LLMs still make some mistakes due to limited medical knowledge and domain-specific context understanding. Nonetheless, we believe the explanatory capabilities of LLMs are highly valuable. Future research is warranted on how such AI assistants can be integrated into the routine trial matching workflow in real-world settings to improve its efficiency.
BioREx: Improving Biomedical Relation Extraction by Leveraging Heterogeneous Datasets
Lai, Po-Ting, Wei, Chih-Hsuan, Luo, Ling, Chen, Qingyu, Lu, Zhiyong
Biomedical relation extraction (RE) is the task of automatically identifying and characterizing relations between biomedical concepts from free text. RE is a central task in biomedical natural language processing (NLP) research and plays a critical role in many downstream applications, such as literature-based discovery and knowledge graph construction. State-of-the-art methods were used primarily to train machine learning models on individual RE datasets, such as protein-protein interaction and chemical-induced disease relation. Manual dataset annotation, however, is highly expensive and time-consuming, as it requires domain knowledge. Existing RE datasets are usually domain-specific or small, which limits the development of generalized and high-performing RE models. In this work, we present a novel framework for systematically addressing the data heterogeneity of individual datasets and combining them into a large dataset. Based on the framework and dataset, we report on BioREx, a data-centric approach for extracting relations. Our evaluation shows that BioREx achieves significantly higher performance than the benchmark system trained on the individual dataset, setting a new SOTA from 74.4% to 79.6% in F-1 measure on the recently released BioRED corpus. We further demonstrate that the combined dataset can improve performance for five different RE tasks. In addition, we show that on average BioREx compares favorably to current best-performing methods such as transfer learning and multi-task learning. Finally, we demonstrate BioREx's robustness and generalizability in two independent RE tasks not previously seen in training data: drug-drug N-ary combination and document-level gene-disease RE. The integrated dataset and optimized method have been packaged as a stand-alone tool available at https://github.com/ncbi/BioREx.