Goto

Collaborating Authors

 Lu, Cheng


Maximum Likelihood Training for Score-Based Diffusion ODEs by High-Order Denoising Score Matching

arXiv.org Machine Learning

Score-based generative models have excellent performance in terms of generation quality and likelihood. They model the data distribution by matching a parameterized score network with first-order data score functions. The score network can be used to define an ODE ("score-based diffusion ODE") for exact likelihood evaluation. However, the relationship between the likelihood of the ODE and the score matching objective is unclear. In this work, we prove that matching the first-order score is not sufficient to maximize the likelihood of the ODE, by showing a gap between the maximum likelihood and score matching objectives. To fill up this gap, we show that the negative likelihood of the ODE can be bounded by controlling the first, second, and third-order score matching errors; and we further present a novel high-order denoising score matching method to enable maximum likelihood training of score-based diffusion ODEs. Our algorithm guarantees that the higher-order matching error is bounded by the training error and the lower-order errors. We empirically observe that by high-order score matching, score-based diffusion ODEs achieve better likelihood on both synthetic data and CIFAR-10, while retaining the high generation quality.


Virtual Multi-Modality Self-Supervised Foreground Matting for Human-Object Interaction

arXiv.org Artificial Intelligence

Most existing human matting algorithms tried to separate pure human-only foreground from the background. In this paper, we propose a Virtual Multi-modality Foreground Matting (VMFM) method to learn human-object interactive foreground (human and objects interacted with him or her) from a raw RGB image. The VMFM method requires no additional inputs, e.g. trimap or known background. We reformulate foreground matting as a self-supervised multi-modality problem: factor each input image into estimated depth map, segmentation mask, and interaction heatmap using three auto-encoders. In order to fully utilize the characteristics of each modality, we first train a dual encoder-to-decoder network to estimate the same alpha matte. Then we introduce a self-supervised method: Complementary Learning(CL) to predict deviation probability map and exchange reliable gradients across modalities without label. We conducted extensive experiments to analyze the effectiveness of each modality and the significance of different components in complementary learning. We demonstrate that our model outperforms the state-of-the-art methods.


Deep Two-Stream Video Inference for Human Body Pose and Shape Estimation

arXiv.org Artificial Intelligence

Several video-based 3D pose and shape estimation algorithms have been proposed to resolve the temporal inconsistency of single-image-based methods. However it still remains challenging to have stable and accurate reconstruction. In this paper, we propose a new framework Deep Two-Stream Video Inference for Human Body Pose and Shape Estimation (DTS-VIBE), to generate 3D human pose and mesh from RGB videos. We reformulate the task as a multi-modality problem that fuses RGB and optical flow for more reliable estimation. In order to fully utilize both sensory modalities (RGB or optical flow), we train a two-stream temporal network based on transformer to predict SMPL parameters. The supplementary modality, optical flow, helps to maintain temporal consistency by leveraging motion knowledge between two consecutive frames. The proposed algorithm is extensively evaluated on the Human3.6 and 3DPW datasets. The experimental results show that it outperforms other state-of-the-art methods by a significant margin.


Implicit Normalizing Flows

arXiv.org Machine Learning

Normalizing flows define a probability distribution by an explicit invertible transformation $\boldsymbol{\mathbf{z}}=f(\boldsymbol{\mathbf{x}})$. In this work, we present implicit normalizing flows (ImpFlows), which generalize normalizing flows by allowing the mapping to be implicitly defined by the roots of an equation $F(\boldsymbol{\mathbf{z}}, \boldsymbol{\mathbf{x}})= \boldsymbol{\mathbf{0}}$. ImpFlows build on residual flows (ResFlows) with a proper balance between expressiveness and tractability. Through theoretical analysis, we show that the function space of ImpFlow is strictly richer than that of ResFlows. Furthermore, for any ResFlow with a fixed number of blocks, there exists some function that ResFlow has a non-negligible approximation error. However, the function is exactly representable by a single-block ImpFlow. We propose a scalable algorithm to train and draw samples from ImpFlows. Empirically, we evaluate ImpFlow on several classification and density modeling tasks, and ImpFlow outperforms ResFlow with a comparable amount of parameters on all the benchmarks.


Staying up to Date with Online Content Changes Using Reinforcement Learning for Scheduling

Neural Information Processing Systems

From traditional Web search engines to virtual assistants and Web accelerators, services that rely on online information need to continually keep track of remote content changes by explicitly requesting content updates from remote sources (e.g., web pages). We propose a novel optimization objective for this setting that has several practically desirable properties, and efficient algorithms for it with optimality guarantees even in the face of mixed content change observability and initially unknown change model parameters. Experiments on 18.5M URLs crawled daily for 14 weeks show significant advantages of this approach over prior art. Papers published at the Neural Information Processing Systems Conference.