Goto

Collaborating Authors

 Lozano-Pérez, Tomás


A Framework for Multiple-Instance Learning

Neural Information Processing Systems

Multiple-instance learning is a variation on supervised learning, where the task is to learn a concept given positive and negative bags of instances. Each bag may contain many instances, but a bag is labeled positive even if only one of the instances in it falls within the concept. A bag is labeled negative only if all the instances in it are negative. We describe a new general framework, called Diverse Density, for solving multiple-instance learning problems. We apply this framework to learn a simple description of a person from a series of images (bags) containing that person, to a stock selection problem, and to the drug activity prediction problem.


A Framework for Multiple-Instance Learning

Neural Information Processing Systems

Multiple-instance learning is a variation on supervised learning, where the task is to learn a concept given positive and negative bags of instances. Each bag may contain many instances, but a bag is labeled positive even if only one of the instances in it falls within the concept. A bag is labeled negative only if all the instances in it are negative. We describe a new general framework, called Diverse Density, for solving multiple-instance learning problems. We apply this framework to learn a simple description of a person from a series of images (bags) containing that person, to a stock selection problem, and to the drug activity prediction problem.


A Comparison of Dynamic Reposing and Tangent Distance for Drug Activity Prediction

Neural Information Processing Systems

Thomas G. Dietterich Arris Pharmaceutical Corporation and Oregon State University Corvallis, OR 97331-3202 Ajay N. Jain Arris Pharmaceutical Corporation 385 Oyster Point Blvd., Suite 3 South San Francisco, CA 94080 Richard H. Lathrop and Tomas Lozano-Perez Arris Pharmaceutical Corporation and MIT Artificial Intelligence Laboratory 545 Technology Square Cambridge, MA 02139 Abstract In drug activity prediction (as in handwritten character recognition), thefeatures extracted to describe a training example depend on the pose (location, orientation, etc.) of the example. In handwritten characterrecognition, one of the best techniques for addressing thisproblem is the tangent distance method of Simard, LeCun and Denker (1993). Jain, et al. (1993a; 1993b) introduce a new technique-dynamic reposing-that also addresses this problem. Dynamicreposing iteratively learns a neural network and then reposes the examples in an effort to maximize the predicted output values.New models are trained and new poses computed until models and poses converge. This paper compares dynamic reposing to the tangent distance method on the task of predicting the biological activityof musk compounds.


A Comparison of Dynamic Reposing and Tangent Distance for Drug Activity Prediction

Neural Information Processing Systems

The task of drug activity prediction is to predict the activity of proposed drug compounds by learning from the observed activity of previously-synthesized drug compounds. Accurate drug activity prediction can save substantial time and money by focusing the efforts of chemists and biologists on the synthesis and testing of compounds whose predicted activity is high. If the requirements for highly active binding can be displayed in three dimensions, chemists can work from such displays to design new compounds having high predicted activity. Drug molecules usually act by binding to localized sites on large receptor molecules or large enyzme molecules. One reasonable way to represent drug molecules is to capture the location of their surface in the (fixed) frame of reference of the (hypothesized) binding site.