Not enough data to create a plot.
Try a different view from the menu above.
Lorenzo Rosasco
Implicit Regularization of Accelerated Methods in Hilbert Spaces
Nicolò Pagliana, Lorenzo Rosasco
We study learning properties of accelerated gradient descent methods for linear least-squares in Hilbert spaces. We analyze the implicit regularization properties of Nesterov acceleration and a variant of heavy-ball in terms of corresponding learning error bounds. Our results show that acceleration can provides faster bias decay than gradient descent, but also suffers of a more unstable behavior. As a result acceleration cannot be in general expected to improve learning accuracy with respect to gradient descent, but rather to achieve the same accuracy with reduced computations. Our theoretical results are validated by numerical simulations. Our analysis is based on studying suitable polynomials induced by the accelerated dynamics and combining spectral techniques with concentration inequalities.
Generalization Properties of Learning with Random Features
Alessandro Rudi, Lorenzo Rosasco
We study the generalization properties of ridge regression with random features in the statistical learning framework. We show for the first time that O(1/ n) learning bounds can be achieved with only O( n log n) random features rather than O(n) as suggested by previous results. Further, we prove faster learning rates and show that they might require more random features, unless they are sampled according to a possibly problem dependent distribution. Our results shed light on the statistical computational trade-offs in large scale kernelized learning, showing the potential effectiveness of random features in reducing the computational complexity while keeping optimal generalization properties.
Learning with SGD and Random Features
Luigi Carratino, Alessandro Rudi, Lorenzo Rosasco
Sketching and stochastic gradient methods are arguably the most common techniques to derive efficient large scale learning algorithms. In this paper, we investigate their application in the context of nonparametric statistical learning. More precisely, we study the estimator defined by stochastic gradient with mini batches and random features. The latter can be seen as form of nonlinear sketching and used to define approximate kernel methods. The considered estimator is not explicitly penalized/constrained and regularization is implicit. Indeed, our study highlights how different parameters, such as number of features, iterations, step-size and mini-batch size control the learning properties of the solutions. We do this by deriving optimal finite sample bounds, under standard assumptions. The obtained results are corroborated and illustrated by numerical experiments.
Manifold Structured Prediction
Alessandro Rudi, Carlo Ciliberto, GianMaria Marconi, Lorenzo Rosasco
Statistical and Computational Trade-Offs in Kernel K-Means
Daniele Calandriello, Lorenzo Rosasco
We investigate the efficiency of k-means in terms of both statistical and computational requirements. More precisely, we study a Nyström approach to kernel k-means. We analyze the statistical properties of the proposed method and show that it achieves the same accuracy of exact kernel k-means with only a fraction of computations. Indeed, we prove under basic assumptions that sampling n Nyström landmarks allows to greatly reduce computational costs without incurring in any loss of accuracy. To the best of our knowledge this is the first result of this kind for unsupervised learning.
Manifold Structured Prediction
Alessandro Rudi, Carlo Ciliberto, GianMaria Marconi, Lorenzo Rosasco
Structured prediction provides a general framework to deal with supervised problems where the outputs have semantically rich structure. While classical approaches consider finite, albeit potentially huge, output spaces, in this paper we discuss how structured prediction can be extended to a continuous scenario. Specifically, we study a structured prediction approach to manifold valued regression. We characterize a class of problems for which the considered approach is statistically consistent and study how geometric optimization can be used to compute the corresponding estimator.
Dirichlet-based Gaussian Processes for Large-scale Calibrated Classification
Dimitrios Milios, Raffaello Camoriano, Pietro Michiardi, Lorenzo Rosasco, Maurizio Filippone
This paper studies the problem of deriving fast and accurate classification algorithms with uncertainty quantification. Gaussian process classification provides a principled approach, but the corresponding computational burden is hardly sustainable in large-scale problems and devising efficient alternatives is a challenge. In this work, we investigate if and how Gaussian process regression directly applied to classification labels can be used to tackle this question. While in this case training is remarkably faster, predictions need to be calibrated for classification and uncertainty estimation. To this aim, we propose a novel regression approach where the labels are obtained through the interpretation of classification labels as the coefficients of a degenerate Dirichlet distribution. Extensive experimental results show that the proposed approach provides essentially the same accuracy and uncertainty quantification as Gaussian process classification while requiring only a fraction of computational resources.
Implicit Regularization of Accelerated Methods in Hilbert Spaces
Nicolò Pagliana, Lorenzo Rosasco
We study learning properties of accelerated gradient descent methods for linear least-squares in Hilbert spaces. We analyze the implicit regularization properties of Nesterov acceleration and a variant of heavy-ball in terms of corresponding learning error bounds. Our results show that acceleration can provides faster bias decay than gradient descent, but also suffers of a more unstable behavior. As a result acceleration cannot be in general expected to improve learning accuracy with respect to gradient descent, but rather to achieve the same accuracy with reduced computations. Our theoretical results are validated by numerical simulations. Our analysis is based on studying suitable polynomials induced by the accelerated dynamics and combining spectral techniques with concentration inequalities.