Goto

Collaborating Authors

 Lomonaco, Vincenzo


Memory Population in Continual Learning via Outlier Elimination

arXiv.org Artificial Intelligence

Catastrophic forgetting, the phenomenon of forgetting previously learned tasks when learning a new one, is a major hurdle in developing continual learning algorithms. A popular method to alleviate forgetting is to use a memory buffer, which stores a subset of previously learned task examples for use during training on new tasks. The de facto method of filling memory is by randomly selecting previous examples. However, this process could introduce outliers or noisy samples that could hurt the generalization of the model. This paper introduces Memory Outlier Elimination (MOE), a method for identifying and eliminating outliers in the memory buffer by choosing samples from label-homogeneous subpopulations. We show that a space with a high homogeneity is related to a feature space that is more representative of the class distribution. In practice, MOE removes a sample if it is surrounded by samples from different labels. We demonstrate the effectiveness of MOE on CIFAR-10, CIFAR-100, and CORe50, outperforming previous well-known memory population methods.


A Comprehensive Empirical Evaluation on Online Continual Learning

arXiv.org Artificial Intelligence

Online continual learning aims to get closer to a live learning experience by learning directly on a stream of data with temporally shifting distribution and by storing a minimum amount of data from that stream. In this empirical evaluation, we evaluate various methods from the literature that tackle online continual learning. More specifically, we focus on the class-incremental setting in the context of image classification, where the learner must learn new classes incrementally from a stream of data. We compare these methods on the Split-CIFAR100 and Split-TinyImagenet benchmarks, and measure their average accuracy, forgetting, stability, and quality of the representations, to evaluate various aspects of the algorithm at the end but also during the whole training period. We find that most methods suffer from stability and underfitting issues. However, the learned representations are comparable to i.i.d. training under the same computational budget. No clear winner emerges from the results and basic experience replay, when properly tuned and implemented, is a very strong baseline. We release our modular and extensible codebase at https://github.com/AlbinSou/ocl_survey based on the avalanche framework to reproduce our results and encourage future research.


In-context Interference in Chat-based Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) have had a huge impact on society due to their impressive capabilities and vast knowledge of the world. Various applications and tools have been created that allow users to interact with these models in a black-box scenario. However, one limitation of this scenario is that users cannot modify the internal knowledge of the model, and the only way to add or modify internal knowledge is by explicitly mentioning it to the model during the current interaction. This learning process is called in-context training, and it refers to training that is confined to the user's current session or context. In-context learning has significant applications, but also has limitations that are seldom studied. In this paper, we present a study that shows how the model can suffer from interference between information that continually flows in the context, causing it to forget previously learned knowledge, which can reduce the model's performance. Along with showing the problem, we propose an evaluation benchmark based on the bAbI dataset.


LuckyMera: a Modular AI Framework for Building Hybrid NetHack Agents

arXiv.org Artificial Intelligence

In the last few decades we have witnessed a significant development in Artificial Intelligence (AI) thanks to the availability of a variety of testbeds, mostly based on simulated environments and video games. Among those, roguelike games offer a very good trade-off in terms of complexity of the environment and computational costs, which makes them perfectly suited to test AI agents generalization capabilities. In this work, we present LuckyMera, a flexible, modular, extensible and configurable AI framework built around NetHack, a popular terminal-based, single-player roguelike video game. This library is aimed at simplifying and speeding up the development of AI agents capable of successfully playing the game and offering a high-level interface for designing game strategies. LuckyMera comes with a set of off-the-shelf symbolic and neural modules (called "skills"): these modules can be either hard-coded behaviors, or neural Reinforcement Learning approaches, with the possibility of creating compositional hybrid solutions. Additionally, LuckyMera comes with a set of utility features to save its experiences in the form of trajectories for further analysis and to use them as datasets to train neural modules, with a direct interface to the NetHack Learning Environment and MiniHack. Through an empirical evaluation we validate our skills implementation and propose a strong baseline agent that can reach state-of-the-art performances in the complete NetHack game. LuckyMera is open-source and available at https://github.com/Pervasive-AI-Lab/LuckyMera.


Continual Learning for Predictive Maintenance: Overview and Challenges

arXiv.org Artificial Intelligence

Deep learning techniques have become one of the main propellers for solving engineering problems effectively and efficiently. For instance, Predictive Maintenance methods have been used to improve predictions of when maintenance is needed on different machines and operative contexts. However, deep learning methods are not without limitations, as these models are normally trained on a fixed distribution that only reflects the current state of the problem. Due to internal or external factors, the state of the problem can change, and the performance decreases due to the lack of generalization and adaptation. Contrary to this stationary training set, real-world applications change their environments constantly, creating the need to constantly adapt the model to evolving scenarios. To aid in this endeavor, Continual Learning methods propose ways to constantly adapt prediction models and incorporate new knowledge after deployment. Despite the advantages of these techniques, there are still challenges to applying them to real-world problems. In this work, we present a brief introduction to predictive maintenance, non-stationary environments, and continual learning, together with an extensive review of the current state of applying continual learning in real-world applications and specifically in predictive maintenance. We then discuss the current challenges of both predictive maintenance and continual learning, proposing future directions at the intersection of both areas. Finally, we propose a novel way to create benchmarks that favor the application of continuous learning methods in more realistic environments, giving specific examples of predictive maintenance.


Studying Generalization on Memory-Based Methods in Continual Learning

arXiv.org Artificial Intelligence

One of the objectives of Continual Learning is to learn new concepts continually over a stream Despite successful results, previous works have argued that of experiences and at the same time avoid catastrophic memory-based methods are prone to overfitting (Lopez-Paz forgetting. To mitigate complete knowledge & Ranzato, 2017; Verwimp et al., 2021). By only storing a overwriting, memory-based methods store subset of previous distributions, the model only reinforces a percentage of previous data distributions to be concepts and ideas that are present in the buffer, depending used during training. Although these methods on how much previous distributions are represented. To produce good results, few studies have tested reinforce useful concepts, the buffer should accurately represent their out-of-distribution generalization properties, the whole training distribution. However, if the buffer as well as whether these methods overfit the replay represents only a small percentage of the training distribution, memory. In this work, we show that although it will start learning spurious correlations and will lose these methods can help in traditional indistribution its generalization capabilities.


Class-Incremental Learning with Repetition

arXiv.org Artificial Intelligence

Real-world data streams naturally include the repetition of previous concepts. From a Continual Learning (CL) perspective, repetition is a property of the environment and, unlike replay, cannot be controlled by the agent. Nowadays, the Class-Incremental (CI) scenario represents the leading test-bed for assessing and comparing CL strategies. This scenario type is very easy to use, but it never allows revisiting previously seen classes, thus completely neglecting the role of repetition. We focus on the family of Class-Incremental with Repetition (CIR) scenario, where repetition is embedded in the definition of the stream. We propose two stochastic stream generators that produce a wide range of CIR streams starting from a single dataset and a few interpretable control parameters. We conduct the first comprehensive evaluation of repetition in CL by studying the behavior of existing CL strategies under different CIR streams. We then present a novel replay strategy that exploits repetition and counteracts the natural imbalance present in the stream. On both CIFAR100 and TinyImageNet, our strategy outperforms other replay approaches, which are not designed for environments with repetition. Continual Learning (CL) requires a model to learn new information from a stream of experiences presented over time, without forgetting previous knowledge (Parisi et al., 2019; Lesort et al., 2020). The nature and characteristics of the data stream can vary a lot depending on the real-world environment and target application.


Partial Hypernetworks for Continual Learning

arXiv.org Artificial Intelligence

Hypernetworks mitigate forgetting in continual learning (CL) by generating task-dependent weights and penalizing weight changes at a meta-model level. Unfortunately, generating all weights is not only computationally expensive for larger architectures, but also, it is not well understood whether generating all model weights is necessary. Inspired by latent replay methods in CL, we propose partial weight generation for the final layers of a model using hypernetworks while freezing the initial layers. With this objective, we first answer the question of how many layers can be frozen without compromising the final performance. Through several experiments, we empirically show that the number of layers that can be frozen is proportional to the distributional similarity in the CL stream. Then, to demonstrate the effectiveness of hypernetworks, we show that noisy streams can significantly impact the performance of latent replay methods, leading to increased forgetting when features from noisy experiences are replayed with old samples. In contrast, partial hypernetworks are more robust to noise by maintaining accuracy on previous experiences. Finally, we conduct experiments on the split CIFAR-100 and TinyImagenet benchmarks and compare different versions of partial hypernetworks to latent replay methods. We conclude that partial weight generation using hypernetworks is a promising solution to the problem of forgetting in neural networks. It can provide an effective balance between computation and final test accuracy in CL streams.


Projected Latent Distillation for Data-Agnostic Consolidation in Distributed Continual Learning

arXiv.org Artificial Intelligence

Distributed learning on the edge often comprises self-centered devices (SCD) which learn local tasks independently and are unwilling to contribute to the performance of other SDCs. How do we achieve forward transfer at zero cost for the single SCDs? We formalize this problem as a Distributed Continual Learning scenario, where SCD adapt to local tasks and a CL model consolidates the knowledge from the resulting stream of models without looking at the SCD's private data. Unfortunately, current CL methods are not directly applicable to this scenario. We propose Data-Agnostic Consolidation (DAC), a novel double knowledge distillation method that consolidates the stream of SC models without using the original data. DAC performs distillation in the latent space via a novel Projected Latent Distillation loss. Experimental results show that DAC enables forward transfer between SCDs and reaches state-of-the-art accuracy on Split CIFAR100, CORe50 and Split TinyImageNet, both in reharsal-free and distributed CL scenarios. Somewhat surprisingly, even a single out-of-distribution image is sufficient as the only source of data during consolidation.


Avalanche: A PyTorch Library for Deep Continual Learning

arXiv.org Artificial Intelligence

Continual learning is the problem of learning from a nonstationary stream of data, a fundamental issue for sustainable and efficient training of deep neural networks over time. Unfortunately, deep learning libraries only provide primitives for offline training, assuming that model's architecture and data are fixed. Avalanche is an open source library maintained by the ContinualAI non-profit organization that extends PyTorch by providing first-class support for dynamic architectures, streams of datasets, and incremental training and evaluation methods. Avalanche provides a large set of predefined benchmarks and training algorithms and it is easy to extend and modular while supporting a wide range of continual learning scenarios. Documentation is available at \url{https://avalanche.continualai.org}.