Not enough data to create a plot.
Try a different view from the menu above.
Lodi, Andrea
Explainable prediction of Qcodes for NOTAMs using column generation
Patel, Krunal Kishor, Desaulniers, Guy, Lodi, Andrea, Lecue, Freddy
A NOtice To AirMen (NOTAM) contains important flight route related information. To search and filter them, NOTAMs are grouped into categories called QCodes. In this paper, we develop a tool to predict, with some explanations, a Qcode for a NOTAM. We present a way to extend the interpretable binary classification using column generation proposed in Dash, Gunluk, and Wei (2018) to a multiclass text classification method. We describe the techniques used to tackle the issues related to one vs-rest classification, such as multiple outputs and class imbalances. Furthermore, we introduce some heuristics, including the use of a CP-SAT solver for the subproblems, to reduce the training time. Finally, we show that our approach compares favorably with state-of-the-art machine learning algorithms like Linear SVM and small neural networks while adding the needed interpretability component.
Lookback for Learning to Branch
Gupta, Prateek, Khalil, Elias B., Chetélat, Didier, Gasse, Maxime, Bengio, Yoshua, Lodi, Andrea, Kumar, M. Pawan
The expressive and computationally inexpensive bipartite Graph Neural Networks (GNN) have been shown to be an important component of deep learning based Mixed-Integer Linear Program (MILP) solvers. Recent works have demonstrated the effectiveness of such GNNs in replacing the branching (variable selection) heuristic in branch-and-bound (B&B) solvers. These GNNs are trained, offline and on a collection of MILPs, to imitate a very good but computationally expensive branching heuristic, strong branching. Given that B&B results in a tree of sub-MILPs, we ask (a) whether there are strong dependencies exhibited by the target heuristic among the neighboring nodes of the B&B tree, and (b) if so, whether we can incorporate them in our training procedure. Specifically, we find that with the strong branching heuristic, a child node's best choice was often the parent's second-best choice. We call this the "lookback" phenomenon. Surprisingly, the typical branching GNN of Gasse et al. (2019) often misses this simple "answer". To imitate the target behavior more closely by incorporating the lookback phenomenon in GNNs, we propose two methods: (a) target smoothing for the standard cross-entropy loss function, and (b) adding a Parent-as-Target (PAT) Lookback regularizer term. Finally, we propose a model selection framework to incorporate harder-to-formulate objectives such as solving time in the final models. Through extensive experimentation on standard benchmark instances, we show that our proposal results in up to 22% decrease in the size of the B&B tree and up to 15% improvement in the solving times.
A machine learning framework for neighbor generation in metaheuristic search
Liu, Defeng, Perreault, Vincent, Hertz, Alain, Lodi, Andrea
This paper presents a methodology for integrating machine learning techniques into metaheuristics for solving combinatorial optimization problems. Namely, we propose a general machine learning framework for neighbor generation in metaheuristic search. We first define an efficient neighborhood structure constructed by applying a transformation to a selected subset of variables from the current solution. Then, the key of the proposed methodology is to generate promising neighbors by selecting a proper subset of variables that contains a descent of the objective in the solution space. To learn a good variable selection strategy, we formulate the problem as a classification task that exploits structural information from the characteristics of the problem and from high-quality solutions. We validate our methodology on two metaheuristic applications: a Tabu Search scheme for solving a Wireless Network Optimization problem and a Large Neighborhood Search heuristic for solving Mixed-Integer Programs. The experimental results show that our approach is able to achieve a satisfactory trade-off between the exploration of a larger solution space and the exploitation of high-quality solution regions on both applications.
Learning to repeatedly solve routing problems
Morabit, Mouad, Desaulniers, Guy, Lodi, Andrea
In the last years, there has been a great interest in machine-learning-based heuristics for solving NP-hard combinatorial optimization problems. The developed methods have shown potential on many optimization problems. In this paper, we present a learned heuristic for the reoptimization of a problem after a minor change in its data. We focus on the case of the capacited vehicle routing problem with static clients (i.e., same client locations) and changed demands. Given the edges of an original solution, the goal is to predict and fix the ones that have a high chance of remaining in an optimal solution after a change of client demands. This partial prediction of the solution reduces the complexity of the problem and speeds up its resolution, while yielding a good quality solution. The proposed approach resulted in solutions with an optimality gap ranging from 0\% to 1.7\% on different benchmark instances within a reasonable computing time.
Learning to Compare Nodes in Branch and Bound with Graph Neural Networks
Labassi, Abdel Ghani, Chételat, Didier, Lodi, Andrea
Branch-and-bound approaches in integer programming require ordering portions of the space to explore next, a problem known as node comparison. We propose a new siamese graph neural network model to tackle this problem, where the nodes are represented as bipartite graphs with attributes. Similar to prior work, we train our model to imitate a diving oracle that plunges towards the optimal solution. We evaluate our method by solving the instances in a plain framework where the nodes are explored according to their rank. On three NP-hard benchmarks chosen to be particularly primal-difficult, our approach leads to faster solving and smaller branch- and-bound trees than the default ranking function of the open-source solver SCIP, as well as competing machine learning methods. Moreover, these results generalize to instances larger than used for training. Code for reproducing the experiments can be found at https://github.com/ds4dm/learn2comparenodes.
A Stochastic Proximal Method for Nonsmooth Regularized Finite Sum Optimization
Lakhmiri, Dounia, Orban, Dominique, Lodi, Andrea
We consider the problem of training a deep neural network with nonsmooth regularization to retrieve a sparse and efficient sub-structure. Our regularizer is only assumed to be lower semi-continuous and prox-bounded. We combine an adaptive quadratic regularization approach with proximal stochastic gradient principles to derive a new solver, called SR2, whose convergence and worst-case complexity are established without knowledge or approximation of the gradient's Lipschitz constant. We formulate a stopping criteria that ensures an appropriate first-order stationarity measure converges to zero under certain conditions. We establish a worst-case iteration complexity of $\mathcal{O}(\epsilon^{-2})$ that matches those of related methods like ProxGEN, where the learning rate is assumed to be related to the Lipschitz constant. Our experiments on network instances trained on CIFAR-10 and CIFAR-100 with $\ell_1$ and $\ell_0$ regularizations show that SR2 consistently achieves higher sparsity and accuracy than related methods such as ProxGEN and ProxSGD.
MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers
Khalil, Elias B., Morris, Christopher, Lodi, Andrea
Mixed-integer programming (MIP) technology offers a generic way of formulating and solving combinatorial optimization problems. While generally reliable, state-of-the-art MIP solvers base many crucial decisions on hand-crafted heuristics, largely ignoring common patterns within a given instance distribution of the problem of interest. Here, we propose MIP-GNN, a general framework for enhancing such solvers with data-driven insights. By encoding the variable-constraint interactions of a given mixed-integer linear program (MILP) as a bipartite graph, we leverage state-of-the-art graph neural network architectures to predict variable biases, i.e., component-wise averages of (near) optimal solutions, indicating how likely a variable will be set to 0 or 1 in (near) optimal solutions of binary MILPs. In turn, the predicted biases stemming from a single, once-trained model are used to guide the solver, replacing heuristic components. We integrate MIP-GNN into a state-of-the-art MIP solver, applying it to tasks such as node selection and warm-starting, showing significant improvements compared to the default setting of the solver on two classes of challenging binary MILPs.
Learning to Search in Local Branching
Liu, Defeng, Fischetti, Matteo, Lodi, Andrea
Finding high-quality solutions to mixed-integer linear programming problems (MILPs) is of great importance for many practical applications. In this respect, the refinement heuristic local branching (LB) has been proposed to produce improving solutions and has been highly influential for the development of local search methods in MILP. The algorithm iteratively explores a sequence of solution neighborhoods defined by the so-called local branching constraint, namely, a linear inequality limiting the distance from a reference solution. For a LB algorithm, the choice of the neighborhood size is critical to performance. Although it was initialized by a conservative value in the original LB scheme, our new observation is that the best size is strongly dependent on the particular MILP instance. In this work, we investigate the relation between the size of the search neighborhood and the behavior of the underlying LB algorithm, and we devise a leaning based framework for guiding the neighborhood search of the LB heuristic. The framework consists of a two-phase strategy. For the first phase, a scaled regression model is trained to predict the size of the LB neighborhood at the first iteration through a regression task. In the second phase, we leverage reinforcement learning and devise a reinforced neighborhood search strategy to dynamically adapt the size at the subsequent iterations. We computationally show that the neighborhood size can indeed be learned, leading to improved performances and that the overall algorithm generalizes well both with respect to the instance size and, remarkably, across instances.
Combinatorial optimization and reasoning with graph neural networks
Cappart, Quentin, Chételat, Didier, Khalil, Elias, Lodi, Andrea, Morris, Christopher, Veličković, Petar
Combinatorial optimization is a well-established area in operations research and computer science. Until recently, its methods have focused on solving problem instances in isolation, ignoring the fact that they often stem from related data distributions in practice. However, recent years have seen a surge of interest in using machine learning, especially graph neural networks (GNNs), as a key building block for combinatorial tasks, either as solvers or as helper functions. GNNs are an inductive bias that effectively encodes combinatorial and relational input due to their permutation-invariance and sparsity awareness. This paper presents a conceptual review of recent key advancements in this emerging field, aiming at both the optimization and machine learning researcher.
Estimating the Impact of an Improvement to a Revenue Management System: An Airline Application
Laage, Greta, Frejinger, Emma, Hamilton, William L., Lodi, Andrea, Rabusseau, Guillaume
Airlines have been making use of highly complex Revenue Management Systems to maximize revenue for decades. Estimating the impact of changing one component of those systems on an important outcome such as revenue is crucial, yet very challenging. It is indeed the difference between the generated value and the value that would have been generated keeping business as usual, which is not observable. We provide a comprehensive overview of counterfactual prediction models and use them in an extensive computational study based on data from Air Canada to estimate such impact. We focus on predicting the counterfactual revenue and compare it to the observed revenue subject to the impact. Our microeconomic application and small expected treatment impact stand out from the usual synthetic control applications. We present accurate linear and deep-learning counterfactual prediction models which achieve respectively 1.1% and 1% of error and allow to estimate a simulated effect quite accurately.