Plotting

 Lodi, Andrea


Scalable First-order Method for Certifying Optimal k-Sparse GLMs

arXiv.org Artificial Intelligence

This paper investigates the problem of certifying optimality for sparse generalized linear models (GLMs), where sparsity is enforced through an $\ell_0$ cardinality constraint. While branch-and-bound (BnB) frameworks can certify optimality by pruning nodes using dual bounds, existing methods for computing these bounds are either computationally intensive or exhibit slow convergence, limiting their scalability to large-scale problems. To address this challenge, we propose a first-order proximal gradient algorithm designed to solve the perspective relaxation of the problem within a BnB framework. Specifically, we formulate the relaxed problem as a composite optimization problem and demonstrate that the proximal operator of the non-smooth component can be computed exactly in log-linear time complexity, eliminating the need to solve a computationally expensive second-order cone program. Furthermore, we introduce a simple restart strategy that enhances convergence speed while maintaining low per-iteration complexity. Extensive experiments on synthetic and real-world datasets show that our approach significantly accelerates dual bound computations and is highly effective in providing optimality certificates for large-scale problems.


The Differentiable Feasibility Pump

arXiv.org Artificial Intelligence

Although nearly 20 years have passed since its conception, the feasibility pump algorithm remains a widely used heuristic to find feasible primal solutions to mixed-integer linear problems. Many extensions of the initial algorithm have been proposed. Yet, its core algorithm remains centered around two key steps: solving the linear relaxation of the original problem to obtain a solution that respects the constraints, and rounding it to obtain an integer solution. This paper shows that the traditional feasibility pump and many of its follow-ups can be seen as gradient-descent algorithms with specific parameters. A central aspect of this reinterpretation is observing that the traditional algorithm differentiates the solution of the linear relaxation with respect to its cost. This reinterpretation opens many opportunities for improving the performance of the original algorithm. We study how to modify the gradient-update step as well as extending its loss function. We perform extensive experiments on MIPLIB instances and show that these modifications can substantially reduce the number of iterations needed to find a solution.


Dual Policy Reinforcement Learning for Real-time Rebalancing in Bike-sharing Systems

arXiv.org Artificial Intelligence

Bike-sharing systems play a crucial role in easing traffic congestion and promoting healthier lifestyles. However, ensuring their reliability and user acceptance requires effective strategies for rebalancing bikes. This study introduces a novel approach to address the real-time rebalancing problem with a fleet of vehicles. It employs a dual policy reinforcement learning algorithm that decouples inventory and routing decisions, enhancing realism and efficiency compared to previous methods where both decisions were made simultaneously. We first formulate the inventory and routing subproblems as a multi-agent Markov Decision Process within a continuous time framework. Subsequently, we propose a DQN-based dual policy framework to jointly estimate the value functions, minimizing the lost demand. To facilitate learning, a comprehensive simulator is applied to operate under a first-arrive-first-serve rule, which enables the computation of immediate rewards across diverse demand scenarios. We conduct extensive experiments on various datasets generated from historical real-world data, affected by both temporal and weather factors. Our proposed algorithm demonstrates significant performance improvements over previous baseline methods. It offers valuable practical insights for operators and further explores the incorporation of reinforcement learning into real-world dynamic programming problems, paving the way for more intelligent and robust urban mobility solutions.


Actively Learning Combinatorial Optimization Using a Membership Oracle

arXiv.org Artificial Intelligence

We consider solving a combinatorial optimization problem with an unknown linear constraint using a membership oracle that, given a solution, determines whether it is feasible or infeasible with absolute certainty. The goal of the decision maker is to find the best possible solution subject to a budget on the number of oracle calls. Inspired by active learning based on Support Vector Machines (SVMs), we adapt a classical framework in order to solve the problem by learning and exploiting a surrogate linear constraint. The resulting new framework includes training a linear separator on the labeled points and selecting new points to be labeled, which is achieved by applying a sampling strategy and solving a 0-1 integer linear program. Following the active learning literature, one can consider using SVM as a linear classifier and the information-based sampling strategy known as Simple margin. We improve on both sides: we propose an alternative sampling strategy based on mixed-integer quadratic programming and a linear separation method inspired by an algorithm for convex optimization in the oracle model. We conduct experiments on the pure knapsack problem and on a college study plan problem from the literature to show how different linear separation methods and sampling strategies influence the quality of the results in terms of objective value.


One-for-many Counterfactual Explanations by Column Generation

arXiv.org Artificial Intelligence

In recent years, machine learning algorithms have been used in high-stakes decision-making settings, such as healthcare, loan approval, or parole decisions (Baesens et al., 2003; Zeng et al., 2022, 2017). Consequently, there is a growing interest and necessity in their explainability and interpretability (Du et al., 2019; Jung et al., 2020; Molnar et al., 2020; Rudin et al., 2022; Zhang et al., 2019). Once a supervised classification model has been trained, one may be interested in knowing the changes needed to be made in the features of an instance to change the prediction made by the classifier. These changes are the so-called counterfactual explanations (Martens and Provost, 2014; Wachter et al., 2017). There is a growing literature on the development of algorithms to generate counterfactual explanations, see Artelt and Hammer (2019); Guidotti (2022); Karimi et al. (2022); Sokol and Flach (2019); Stepin et al. (2021); Verma et al. (2022) for recent surveys on Counterfactual Analysis. Nevertheless, they mainly focus on the single-instance, single-counterfactual case, where for one specific instance, a single counterfactual is provided (Wachter et al., 2017; Parmentier and Vidal, 2021).


Machine Learning Augmented Branch and Bound for Mixed Integer Linear Programming

arXiv.org Artificial Intelligence

Mixed Integer Linear Programming (MILP) is a pillar of mathematical optimization that offers a powerful modeling language for a wide range of applications. During the past decades, enormous algorithmic progress has been made in solving MILPs, and many commercial and academic software packages exist. Nevertheless, the availability of data, both from problem instances and from solvers, and the desire to solve new problems and larger (real-life) instances, trigger the need for continuing algorithmic development. MILP solvers use branch and bound as their main component. In recent years, there has been an explosive development in the use of machine learning algorithms for enhancing all main tasks involved in the branch-and-bound algorithm, such as primal heuristics, branching, cutting planes, node selection and solver configuration decisions. This paper presents a survey of such approaches, addressing the vision of integration of machine learning and mathematical optimization as complementary technologies, and how this integration can benefit MILP solving. In particular, we give detailed attention to machine learning algorithms that automatically optimize some metric of branch-and-bound efficiency. We also address how to represent MILPs in the context of applying learning algorithms, MILP benchmarks and software.


A Reinforcement Learning Approach for Dynamic Rebalancing in Bike-Sharing System

arXiv.org Artificial Intelligence

Bike-Sharing Systems provide eco-friendly urban mobility, contributing to the alleviation of traffic congestion and to healthier lifestyles. Efficiently operating such systems and maintaining high customer satisfaction is challenging due to the stochastic nature of trip demand, leading to full or empty stations. Devising effective rebalancing strategies using vehicles to redistribute bikes among stations is therefore of uttermost importance for operators. As a promising alternative to classical mathematical optimization, reinforcement learning is gaining ground to solve sequential decision-making problems. This paper introduces a spatio-temporal reinforcement learning algorithm for the dynamic rebalancing problem with multiple vehicles. We first formulate the problem as a Multi-agent Markov Decision Process in a continuous time framework. This allows for independent and cooperative vehicle rebalancing, eliminating the impractical restriction of time-discretized models where vehicle departures are synchronized. A comprehensive simulator under the first-arrive-first-serve rule is then developed to facilitate the learning process by computing immediate rewards under diverse demand scenarios. To estimate the value function and learn the rebalancing policy, various Deep Q-Network configurations are tested, minimizing the lost demand. Experiments are carried out on various datasets generated from historical data, affected by both temporal and weather factors. The proposed algorithms outperform benchmarks, including a multi-period Mixed-Integer Programming model, in terms of lost demand. Once trained, it yields immediate decisions, making it suitable for real-time applications. Our work offers practical insights for operators and enriches the integration of reinforcement learning into dynamic rebalancing problems, paving the way for more intelligent and robust urban mobility solutions.


Revisiting column-generation-based matheuristic for learning classification trees

arXiv.org Artificial Intelligence

Decision trees are highly interpretable models for solving classification problems in machine learning (ML). The standard ML algorithms for training decision trees are fast but generate suboptimal trees in terms of accuracy. Other discrete optimization models in the literature address the optimality problem but only work well on relatively small datasets. \cite{firat2020column} proposed a column-generation-based heuristic approach for learning decision trees. This approach improves scalability and can work with large datasets. In this paper, we describe improvements to this column generation approach. First, we modify the subproblem model to significantly reduce the number of subproblems in multiclass classification instances. Next, we show that the data-dependent constraints in the master problem are implied, and use them as cutting planes. Furthermore, we describe a separation model to generate data points for which the linear programming relaxation solution violates their corresponding constraints. We conclude by presenting computational results that show that these modifications result in better scalability.


Structured Pruning of Neural Networks for Constraints Learning

arXiv.org Artificial Intelligence

In recent years, the integration of Machine Learning (ML) models with Operation Research (OR) tools has gained popularity across diverse applications, including cancer treatment, algorithmic configuration, and chemical process optimization. In this domain, the combination of ML and OR often relies on representing the ML model output using Mixed Integer Programming (MIP) formulations. Numerous studies in the literature have developed such formulations for many ML predictors, with a particular emphasis on Artificial Neural Networks (ANNs) due to their significant interest in many applications. However, ANNs frequently contain a large number of parameters, resulting in MIP formulations that are impractical to solve, thereby impeding scalability. In fact, the ML community has already introduced several techniques to reduce the parameter count of ANNs without compromising their performance, since the substantial size of modern ANNs presents challenges for ML applications as it significantly impacts computational efforts during training and necessitates significant memory resources for storage. In this paper, we showcase the effectiveness of pruning, one of these techniques, when applied to ANNs prior to their integration into MIPs. By pruning the ANN, we achieve significant improvements in the speed of the solution process. We discuss why pruning is more suitable in this context compared to other ML compression techniques, and we identify the most appropriate pruning strategies. To highlight the potential of this approach, we conduct experiments using feed-forward neural networks with multiple layers to construct adversarial examples. Our results demonstrate that pruning offers remarkable reductions in solution times without hindering the quality of the final decision, enabling the resolution of previously unsolvable instances.


Reinforcement Learning for Freight Booking Control Problems

arXiv.org Artificial Intelligence

Booking control problems are sequential decision-making problems that occur in the domain of revenue management. More precisely, freight booking control focuses on the problem of deciding to accept or reject bookings: given a limited capacity, accept a booking request or reject it to reserve capacity for future bookings with potentially higher revenue. This problem can be formulated as a finite-horizon stochastic dynamic program, where accepting a set of requests results in a profit at the end of the booking period that depends on the cost of fulfilling the accepted bookings. For many freight applications, the cost of fulfilling requests is obtained by solving an operational decision-making problem, which often requires the solutions to mixed-integer linear programs. Routinely solving such operational problems when deploying reinforcement learning algorithms may be too time consuming. The majority of booking control policies are obtained by solving problem-specific mathematical programming relaxations that are often non-trivial to generalize to new problems and, in some cases, provide quite crude approximations. In this work, we propose a two-phase approach: we first train a supervised learning model to predict the objective of the operational problem, and then we deploy the model within reinforcement learning algorithms to compute control policies. This approach is general: it can be used every time the objective function of the end-of-horizon operational problem can be predicted, and it is particularly suitable to those cases where such problems are computationally hard. Furthermore, it allows one to leverage the recent advances in reinforcement learning as routinely solving the operational problem is replaced with a single prediction. Our methodology is evaluated on two booking control problems in the literature, namely, distributional logistics and airline cargo management.