Not enough data to create a plot.
Try a different view from the menu above.
Liu, Zhuang
Transformers without Normalization
Zhu, Jiachen, Chen, Xinlei, He, Kaiming, LeCun, Yann, Liu, Zhuang
Normalization layers are ubiquitous in modern neural networks and have long been considered essential. This work demonstrates that Transformers without normalization can achieve the same or better performance using a remarkably simple technique. We introduce Dynamic Tanh (DyT), an element-wise operation $DyT($x$) = \tanh(\alpha $x$)$, as a drop-in replacement for normalization layers in Transformers. DyT is inspired by the observation that layer normalization in Transformers often produces tanh-like, $S$-shaped input-output mappings. By incorporating DyT, Transformers without normalization can match or exceed the performance of their normalized counterparts, mostly without hyperparameter tuning. We validate the effectiveness of Transformers with DyT across diverse settings, ranging from recognition to generation, supervised to self-supervised learning, and computer vision to language models. These findings challenge the conventional understanding that normalization layers are indispensable in modern neural networks, and offer new insights into their role in deep networks.
Idiosyncrasies in Large Language Models
Sun, Mingjie, Yin, Yida, Xu, Zhiqiu, Kolter, J. Zico, Liu, Zhuang
In this work, we unveil and study idiosyncrasies in Large Language Models (LLMs) -- unique patterns in their outputs that can be used to distinguish the models. To do so, we consider a simple classification task: given a particular text output, the objective is to predict the source LLM that generates the text. We evaluate this synthetic task across various groups of LLMs and find that simply fine-tuning existing text embedding models on LLM-generated texts yields excellent classification accuracy. Notably, we achieve 97.1% accuracy on held-out validation data in the five-way classification problem involving ChatGPT, Claude, Grok, Gemini, and DeepSeek. Our further investigation reveals that these idiosyncrasies are rooted in word-level distributions. These patterns persist even when the texts are rewritten, translated, or summarized by an external LLM, suggesting that they are also encoded in the semantic content. Additionally, we leverage LLM as judges to generate detailed, open-ended descriptions of each model's idiosyncrasies. Finally, we discuss the broader implications of our findings, particularly for training on synthetic data and inferring model similarity. Code is available at https://github.com/locuslab/llm-idiosyncrasies.
Understanding Bias in Large-Scale Visual Datasets
Zeng, Boya, Yin, Yida, Liu, Zhuang
A recent study has shown that large-scale visual datasets are very biased: they can be easily classified by modern neural networks. However, the concrete forms of bias among these datasets remain unclear. In this study, we propose a framework to identify the unique visual attributes distinguishing these datasets. Our approach applies various transformations to extract semantic, structural, boundary, color, and frequency information from datasets, and assess how much each type of information reflects their bias. We further decompose their semantic bias with object-level analysis, and leverage natural language methods to generate detailed, open-ended descriptions of each dataset's characteristics. Our work aims to help researchers understand the bias in existing large-scale pre-training datasets, and build more diverse and representative ones in the future. Our project page and code are available at http://boyazeng.github.io/understand_bias .
Amphista: Accelerate LLM Inference with Bi-directional Multiple Drafting Heads in a Non-autoregressive Style
Li, Zeping, Yang, Xinlong, Gao, Ziheng, Liu, Ji, Liu, Zhuang, Li, Dong, Peng, Jinzhang, Tian, Lu, Barsoum, Emad
Large Language Models (LLMs) inherently use autoregressive decoding, which lacks parallelism in inference and results in significantly slow inference speeds, especially when hardware parallel accelerators and memory bandwidth are not fully utilized. In this work, we propose Amphista, a speculative decoding algorithm that adheres to a non-autoregressive decoding paradigm. Owing to the increased parallelism, our method demonstrates higher efficiency in inference compared to autoregressive methods. Specifically, Amphista models an Auto-embedding Block capable of parallel inference, incorporating bi-directional attention to enable interaction between different drafting heads. Additionally, Amphista implements Staged Adaptation Layers to facilitate the transition of semantic information from the base model's autoregressive inference to the drafting heads' non-autoregressive speculation, thereby achieving paradigm transformation and feature fusion. We conduct a series of experiments on a suite of Vicuna models using MT-Bench and Spec-Bench. For the Vicuna 33B model, Amphista achieves up to 2.75$\times$ and 1.40$\times$ wall-clock acceleration compared to vanilla autoregressive decoding and Medusa, respectively, while preserving lossless generation quality.
Neural Network Parameter Diffusion
Wang, Kai, Xu, Zhaopan, Zhou, Yukun, Zang, Zelin, Darrell, Trevor, Liu, Zhuang, You, Yang
Diffusion models have achieved remarkable success in image and video generation. In this work, we demonstrate that diffusion models can also \textit{generate high-performing neural network parameters}. Our approach is simple, utilizing an autoencoder and a standard latent diffusion model. The autoencoder extracts latent representations of a subset of the trained network parameters. A diffusion model is then trained to synthesize these latent parameter representations from random noise. It then generates new representations that are passed through the autoencoder's decoder, whose outputs are ready to use as new subsets of network parameters. Across various architectures and datasets, our diffusion process consistently generates models of comparable or improved performance over trained networks, with minimal additional cost. Notably, we empirically find that the generated models are not memorizing the trained networks. Our results encourage more exploration on the versatile use of diffusion models.
Explainable Few-shot Knowledge Tracing
Li, Haoxuan, Yu, Jifan, Ouyang, Yuanxin, Liu, Zhuang, Rong, Wenge, Li, Juanzi, Xiong, Zhang
Knowledge tracing (KT), aiming to mine students' mastery of knowledge by their exercise records and predict their performance on future test questions, is a critical task in educational assessment. While researchers achieved tremendous success with the rapid development of deep learning techniques, current knowledge tracing tasks fall into the cracks from real-world teaching scenarios. Relying heavily on extensive student data and solely predicting numerical performances differs from the settings where teachers assess students' knowledge state from limited practices and provide explanatory feedback. To fill this gap, we explore a new task formulation: Explainable Few-shot Knowledge Tracing. By leveraging the powerful reasoning and generation abilities of large language models (LLMs), we then propose a cognition-guided framework that can track the student knowledge from a few student records while providing natural language explanations. Experimental results from three widely used datasets show that LLMs can perform comparable or superior to competitive deep knowledge tracing methods. We also discuss potential directions and call for future improvements in relevant topics.
A Decade's Battle on Dataset Bias: Are We There Yet?
Liu, Zhuang, He, Kaiming
We revisit the "dataset classification" experiment suggested by Torralba and Efros a decade ago, in the new era with large-scale, diverse, and hopefully less biased datasets as well as more capable neural network architectures. Surprisingly, we observe that modern neural networks can achieve excellent accuracy in classifying which dataset an image is from: e.g., we report 84.7% accuracy on held-out validation data for the three-way classification problem consisting of the YFCC, CC, and DataComp datasets. Our further experiments show that such a dataset classifier could learn semantic features that are generalizable and transferable, which cannot be simply explained by memorization. We hope our discovery will inspire the community to rethink the issue involving dataset bias and model capabilities.
A Review of Data Mining in Personalized Education: Current Trends and Future Prospects
Xiong, Zhang, Li, Haoxuan, Liu, Zhuang, Chen, Zhuofan, Zhou, Hao, Rong, Wenge, Ouyang, Yuanxin
Personalized education, tailored to individual student needs, leverages educational technology and artificial intelligence (AI) in the digital age to enhance learning effectiveness. The integration of AI in educational platforms provides insights into academic performance, learning preferences, and behaviors, optimizing the personal learning process. Driven by data mining techniques, it not only benefits students but also provides educators and institutions with tools to craft customized learning experiences. To offer a comprehensive review of recent advancements in personalized educational data mining, this paper focuses on four primary scenarios: educational recommendation, cognitive diagnosis, knowledge tracing, and learning analysis. This paper presents a structured taxonomy for each area, compiles commonly used datasets, and identifies future research directions, emphasizing the role of data mining in enhancing personalized education and paving the way for future exploration and innovation.
Massive Activations in Large Language Models
Sun, Mingjie, Chen, Xinlei, Kolter, J. Zico, Liu, Zhuang
We observe an empirical phenomenon in Large Language Models (LLMs) -- very few activations exhibit significantly larger values than others (e.g., 100,000 times larger). We call them massive activations. First, we demonstrate the widespread existence of massive activations across various LLMs and characterize their locations. Second, we find their values largely stay constant regardless of the input, and they function as indispensable bias terms in LLMs. Third, these massive activations lead to the concentration of attention probabilities to their corresponding tokens, and further, implicit bias terms in the self-attention output. Last, we also study massive activations in Vision Transformers.
Deconstructing Denoising Diffusion Models for Self-Supervised Learning
Chen, Xinlei, Liu, Zhuang, Xie, Saining, He, Kaiming
In this study, we examine the representation learning abilities of Denoising Diffusion Models (DDM) that were originally purposed for image generation. Our philosophy is to deconstruct a DDM, gradually transforming it into a classical Denoising Autoencoder (DAE). This deconstructive procedure allows us to explore how various components of modern DDMs influence self-supervised representation learning. We observe that only a very few modern components are critical for learning good representations, while many others are nonessential. Our study ultimately arrives at an approach that is highly simplified and to a large extent resembles a classical DAE. We hope our study will rekindle interest in a family of classical methods within the realm of modern self-supervised learning.