Goto

Collaborating Authors

 Liu, Zhiwei


Towards More Robust and Accurate Sequential Recommendation with Cascade-guided Adversarial Training

arXiv.org Artificial Intelligence

Sequential recommendation models, models that learn from chronological user-item interactions, outperform traditional recommendation models in many settings. Despite the success of sequential recommendation models, their robustness has recently come into question. Two properties unique to the nature of sequential recommendation models may impair their robustness - the cascade effects induced during training and the model's tendency to rely too heavily on temporal information. To address these vulnerabilities, we propose Cascade-guided Adversarial training, a new adversarial training procedure that is specifically designed for sequential recommendation models. Our approach harnesses the intrinsic cascade effects present in sequential modeling to produce strategic adversarial perturbations to item embeddings during training. Experiments on training state-of-the-art sequential models on four public datasets from different domains show that our training approach produces superior model ranking accuracy and superior model robustness to real item replacement perturbations when compared to both standard model training and generic adversarial training.


ContrastVAE: Contrastive Variational AutoEncoder for Sequential Recommendation

arXiv.org Artificial Intelligence

Aiming at exploiting the rich information in user behaviour sequences, sequential recommendation has been widely adopted in real-world recommender systems. However, current methods suffer from the following issues: 1) sparsity of user-item interactions, 2) uncertainty of sequential records, 3) long-tail items. In this paper, we propose to incorporate contrastive learning into the framework of Variational AutoEncoders to address these challenges simultaneously. Firstly, we introduce ContrastELBO, a novel training objective that extends the conventional single-view ELBO to two-view case and theoretically builds a connection between VAE and contrastive learning from a two-view perspective. Then we propose Contrastive Variational AutoEncoder (ContrastVAE in short), a two-branched VAE model with contrastive regularization as an embodiment of ContrastELBO for sequential recommendation. We further introduce two simple yet effective augmentation strategies named model augmentation and variational augmentation to create a second view of a sequence and thus making contrastive learning possible. Experiments on four benchmark datasets demonstrate the effectiveness of ContrastVAE and the proposed augmentation methods. Codes are available at https://github.com/YuWang-1024/ContrastVAE


Ranking-based Group Identification via Factorized Attention on Social Tripartite Graph

arXiv.org Artificial Intelligence

Due to the proliferation of social media, a growing number of users search for and join group activities in their daily life. This develops a need for the study on the ranking-based group identification (RGI) task, i.e., recommending groups to users. The major challenge in this task is how to effectively and efficiently leverage both the item interaction and group participation of users' online behaviors. Though recent developments of Graph Neural Networks (GNNs) succeed in simultaneously aggregating both social and user-item interaction, they however fail to comprehensively resolve this RGI task. In this paper, we propose a novel GNN-based framework named Contextualized Factorized Attention for Group identification (CFAG). We devise tripartite graph convolution layers to aggregate information from different types of neighborhoods among users, groups, and items. To cope with the data sparsity issue, we devise a novel propagation augmentation (PA) layer, which is based on our proposed factorized attention mechanism. PA layers efficiently learn the relatedness of non-neighbor nodes to improve the information propagation to users. Experimental results on three benchmark datasets verify the superiority of CFAG. Additional detailed investigations are conducted to demonstrate the effectiveness of the proposed framework.


Intent Contrastive Learning for Sequential Recommendation

arXiv.org Artificial Intelligence

Users' interactions with items are driven by various intents (e.g., preparing for holiday gifts, shopping for fishing equipment, etc.).However, users' underlying intents are often unobserved/latent, making it challenging to leverage such latent intents forSequentialrecommendation(SR). To investigate the benefits of latent intents and leverage them effectively for recommendation, we proposeIntentContrastiveLearning(ICL), a general learning paradigm that leverages a latent intent variable into SR. The core idea is to learn users' intent distribution functions from unlabeled user behavior sequences and optimize SR models with contrastive self-supervised learning (SSL) by considering the learned intents to improve recommendation. Specifically, we introduce a latent variable to represent users' intents and learn the distribution function of the latent variable via clustering. We propose to leverage the learned intents into SR models via contrastive SSL, which maximizes the agreement between a view of sequence and its corresponding intent. The training is alternated between intent representation learning and the SR model optimization steps within the generalized expectation-maximization (EM) framework. Fusing user intent information into SR also improves model robustness. Experiments conducted on four real-world datasets demonstrate the superiority of the proposed learning paradigm, which improves performance, and robustness against data sparsity and noisy interaction issues.


Sequential Recommendation via Stochastic Self-Attention

arXiv.org Artificial Intelligence

Sequential recommendation models the dynamics of a user's previous behaviors in order to forecast the next item, and has drawn a lot of attention. Transformer-based approaches, which embed items as vectors and use dot-product self-attention to measure the relationship between items, demonstrate superior capabilities among existing sequential methods. However, users' real-world sequential behaviors are \textit{\textbf{uncertain}} rather than deterministic, posing a significant challenge to present techniques. We further suggest that dot-product-based approaches cannot fully capture \textit{\textbf{collaborative transitivity}}, which can be derived in item-item transitions inside sequences and is beneficial for cold start items. We further argue that BPR loss has no constraint on positive and sampled negative items, which misleads the optimization. We propose a novel \textbf{STO}chastic \textbf{S}elf-\textbf{A}ttention~(STOSA) to overcome these issues. STOSA, in particular, embeds each item as a stochastic Gaussian distribution, the covariance of which encodes the uncertainty. We devise a novel Wasserstein Self-Attention module to characterize item-item position-wise relationships in sequences, which effectively incorporates uncertainty into model training. Wasserstein attentions also enlighten the collaborative transitivity learning as it satisfies triangle inequality. Moreover, we introduce a novel regularization term to the ranking loss, which assures the dissimilarity between positive and the negative items. Extensive experiments on five real-world benchmark datasets demonstrate the superiority of the proposed model over state-of-the-art baselines, especially on cold start items. The code is available in \url{https://github.com/zfan20/STOSA}.


Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer

arXiv.org Artificial Intelligence

In order to model the evolution of user preference, we should learn user/item embeddings based on time-ordered item purchasing sequences, which is defined as Sequential Recommendation (SR) problem. Existing methods leverage sequential patterns to model item transitions. However, most of them ignore crucial temporal collaborative signals, which are latent in evolving user-item interactions and coexist with sequential patterns. Therefore, we propose to unify sequential patterns and temporal collaborative signals to improve the quality of recommendation, which is rather challenging. Firstly, it is hard to simultaneously encode sequential patterns and collaborative signals. Secondly, it is non-trivial to express the temporal effects of collaborative signals. Hence, we design a new framework Temporal Graph Sequential Recommender (TGSRec) upon our defined continuous-time bi-partite graph. We propose a novel Temporal Collaborative Trans-former (TCT) layer in TGSRec, which advances the self-attention mechanism by adopting a novel collaborative attention. TCT layer can simultaneously capture collaborative signals from both users and items, as well as considering temporal dynamics inside sequential patterns. We propagate the information learned fromTCTlayerover the temporal graph to unify sequential patterns and temporal collaborative signals. Empirical results on five datasets show that TGSRec significantly outperforms other baselines, in average up to 22.5% and 22.1%absolute improvements in Recall@10and MRR, respectively.


Contrastive Self-supervised Sequential Recommendation with Robust Augmentation

arXiv.org Artificial Intelligence

Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data. At their core, such approaches model transition probabilities between items in a sequence, whether through Markov chains, recurrent networks, or more recently, Transformers. However both old and new issues remain, including data-sparsity and noisy data; such issues can impair the performance, especially in complex, parameter-hungry models. In this paper, we investigate the application of contrastive Self-Supervised Learning (SSL) to the sequential recommendation, as a way to alleviate some of these issues. Contrastive SSL constructs augmentations from unlabelled instances, where agreements among positive pairs are maximized. It is challenging to devise a contrastive SSL framework for a sequential recommendation, due to its discrete nature, correlations among items, and skewness of length distributions. To this end, we propose a novel framework, Contrastive Self-supervised Learning for sequential Recommendation (CoSeRec). We introduce two informative augmentation operators leveraging item correlations to create high-quality views for contrastive learning. Experimental results on three real-world datasets demonstrate the effectiveness of the proposed method on improving model performance and the robustness against sparse and noisy data. Our implementation is available online at \url{https://github.com/YChen1993/CoSeRec}


Modeling Sequences as Distributions with Uncertainty for Sequential Recommendation

arXiv.org Artificial Intelligence

The sequential patterns within the user interactions are pivotal for representing the user's preference and capturing latent relationships among items. The recent advancements of sequence modeling by Transformers advocate the community to devise more effective encoders for the sequential recommendation. Most existing sequential methods assume users are deterministic. However, item-item transitions might fluctuate significantly in several item aspects and exhibit randomness of user interests. This \textit{stochastic characteristics} brings up a solid demand to include uncertainties in representing sequences and items. Additionally, modeling sequences and items with uncertainties expands users' and items' interaction spaces, thus further alleviating cold-start problems. In this work, we propose a Distribution-based Transformer for Sequential Recommendation (DT4SR), which injects uncertainties into sequential modeling. We use Elliptical Gaussian distributions to describe items and sequences with uncertainty. We describe the uncertainty in items and sequences as Elliptical Gaussian distribution. And we adopt Wasserstein distance to measure the similarity between distributions. We devise two novel Trans-formers for modeling mean and covariance, which guarantees the positive-definite property of distributions. The proposed method significantly outperforms the state-of-the-art methods. The experiments on three benchmark datasets also demonstrate its effectiveness in alleviating cold-start issues. The code is available inhttps://github.com/DyGRec/DT4SR.


Augmenting Sequential Recommendation with Pseudo-Prior Items via Reversely Pre-training Transformer

arXiv.org Artificial Intelligence

Sequential Recommendation characterizes the evolving patterns by modeling item sequences chronologically. The essential target of it is to capture the item transition correlations. The recent developments of transformer inspire the community to design effective sequence encoders, \textit{e.g.,} SASRec and BERT4Rec. However, we observe that these transformer-based models suffer from the cold-start issue, \textit{i.e.,} performing poorly for short sequences. Therefore, we propose to augment short sequences while still preserving original sequential correlations. We introduce a new framework for \textbf{A}ugmenting \textbf{S}equential \textbf{Re}commendation with \textbf{P}seudo-prior items~(ASReP). We firstly pre-train a transformer with sequences in a reverse direction to predict prior items. Then, we use this transformer to generate fabricated historical items at the beginning of short sequences. Finally, we fine-tune the transformer using these augmented sequences from the time order to predict the next item. Experiments on two real-world datasets verify the effectiveness of ASReP. The code is available on \url{https://github.com/DyGRec/ASReP}.


Basket Recommendation with Multi-Intent Translation Graph Neural Network

arXiv.org Artificial Intelligence

The problem of basket recommendation~(BR) is to recommend a ranking list of items to the current basket. Existing methods solve this problem by assuming the items within the same basket are correlated by one semantic relation, thus optimizing the item embeddings. However, this assumption breaks when there exist multiple intents within a basket. For example, assuming a basket contains \{\textit{bread, cereal, yogurt, soap, detergent}\} where \{\textit{bread, cereal, yogurt}\} are correlated through the "breakfast" intent, while \{\textit{soap, detergent}\} are of "cleaning" intent, ignoring multiple relations among the items spoils the ability of the model to learn the embeddings. To resolve this issue, it is required to discover the intents within the basket. However, retrieving a multi-intent pattern is rather challenging, as intents are latent within the basket. Additionally, intents within the basket may also be correlated. Moreover, discovering a multi-intent pattern requires modeling high-order interactions, as the intents across different baskets are also correlated. To this end, we propose a new framework named as \textbf{M}ulti-\textbf{I}ntent \textbf{T}ranslation \textbf{G}raph \textbf{N}eural \textbf{N}etwork~({\textbf{MITGNN}}). MITGNN models $T$ intents as tail entities translated from one corresponding basket embedding via $T$ relation vectors. The relation vectors are learned through multi-head aggregators to handle user and item information. Additionally, MITGNN propagates multiple intents across our defined basket graph to learn the embeddings of users and items by aggregating neighbors. Extensive experiments on two real-world datasets prove the effectiveness of our proposed model on both transductive and inductive BR. The code is available online at https://github.com/JimLiu96/MITGNN.