Goto

Collaborating Authors

 Liu, Yuhan


Agent-based Simulation for Online Mental Health Matching

arXiv.org Artificial Intelligence

Online mental health communities (OMHCs) are an effective and accessible channel to give and receive social support for individuals with mental and emotional issues. However, a key challenge on these platforms is finding suitable partners to interact with given that mechanisms to match users are currently underdeveloped. In this paper, we collaborate with one of the world's largest OMHC to develop an agent-based simulation framework and explore the trade-offs in different matching algorithms. The simulation framework allows us to compare current mechanisms and new algorithmic matching policies on the platform, and observe their differing effects on a variety of outcome metrics. Our findings include that usage of the deferred-acceptance algorithm can significantly better the experiences of support-seekers in one-on-one chats while maintaining low waiting time. We note key design considerations that agent-based modeling reveals in the OMHC context, including the potential benefits of algorithmic matching on marginalized communities.


TwiBot-22: Towards Graph-Based Twitter Bot Detection

arXiv.org Artificial Intelligence

Twitter bot detection has become an increasingly important task to combat misinformation, facilitate social media moderation, and preserve the integrity of the online discourse. State-of-the-art bot detection methods generally leverage the graph structure of the Twitter network, and they exhibit promising performance when confronting novel Twitter bots that traditional methods fail to detect. However, very few of the existing Twitter bot detection datasets are graph-based, and even these few graph-based datasets suffer from limited dataset scale, incomplete graph structure, as well as low annotation quality. In fact, the lack of a large-scale graph-based Twitter bot detection benchmark that addresses these issues has seriously hindered the development and evaluation of novel graph-based bot detection approaches. In this paper, we propose TwiBot-22, a comprehensive graph-based Twitter bot detection benchmark that presents the largest dataset to date, provides diversified entities and relations on the Twitter network, and has considerably better annotation quality than existing datasets. In addition, we re-implement 35 representative Twitter bot detection baselines and evaluate them on 9 datasets, including TwiBot-22, to promote a fair comparison of model performance and a holistic understanding of research progress. To facilitate further research, we consolidate all implemented codes and datasets into the TwiBot-22 evaluation framework, where researchers could consistently evaluate new models and datasets. The TwiBot-22 Twitter bot detection benchmark and evaluation framework are publicly available at https://twibot22.github.io/.


Discrete Distribution Estimation under User-level Local Differential Privacy

arXiv.org Artificial Intelligence

We study discrete distribution estimation under user-level local differential privacy (LDP). In user-level $\varepsilon$-LDP, each user has $m\ge1$ samples and the privacy of all $m$ samples must be preserved simultaneously. We resolve the following dilemma: While on the one hand having more samples per user should provide more information about the underlying distribution, on the other hand, guaranteeing the privacy of all $m$ samples should make the estimation task more difficult. We obtain tight bounds for this problem under almost all parameter regimes. Perhaps surprisingly, we show that in suitable parameter regimes, having $m$ samples per user is equivalent to having $m$ times more users, each with only one sample. Our results demonstrate interesting phase transitions for $m$ and the privacy parameter $\varepsilon$ in the estimation risk. Finally, connecting with recent results on shuffled DP, we show that combined with random shuffling, our algorithm leads to optimal error guarantees (up to logarithmic factors) under the central model of user-level DP in certain parameter regimes. We provide several simulations to verify our theoretical findings.


Empathetic Response Generation with State Management

arXiv.org Artificial Intelligence

A good empathetic dialogue system should first track and understand a user's emotion and then reply with an appropriate emotion. However, current approaches to this task either focus on improving the understanding of users' emotion or on proposing better responding strategies, and very few works consider both at the same time. Our work attempts to fill this vacancy. Inspired by task-oriented dialogue systems, we propose a novel empathetic response generation model with emotion-aware dialogue management. The emotion-aware dialogue management contains two parts: (1) Emotion state tracking maintains the current emotion state of the user and (2) Empathetic dialogue policy selection predicts a target emotion and a user's intent based on the results of the emotion state tracking. The predicted information is then used to guide the generation of responses. Experimental results show that dynamically managing different information can help the model generate more empathetic responses compared with several baselines under both automatic and human evaluations.


Learning discrete distributions: user vs item-level privacy

arXiv.org Machine Learning

Much of the literature on differential privacy focuses on item-level privacy, where loosely speaking, the goal is to provide privacy per item or training example. However, recently many practical applications such as federated learning require preserving privacy for all items of a single user, which is much harder to achieve. Therefore understanding the theoretical limit of user-level privacy becomes crucial. We study the fundamental problem of learning discrete distributions over $k$ symbols with user-level differential privacy. If each user has $m$ samples, we show that straightforward applications of Laplace or Gaussian mechanisms require the number of users to be $\mathcal{O}(k/(m\alpha^2) + k/\epsilon\alpha)$ to achieve an $\ell_1$ distance of $\alpha$ between the true and estimated distributions, with the privacy-induced penalty $k/\epsilon\alpha$ independent of the number of samples per user $m$. Moreover, we show that any mechanism that only operates on the final aggregate should require a user complexity of the same order. We then propose a mechanism such that the number of users scales as $\tilde{\mathcal{O}}(k/(m\alpha^2) + k/\sqrt{m}\epsilon\alpha)$ and further show that it is nearly-optimal under certain regimes. Thus the privacy penalty is $\mathcal{O}(\sqrt{m})$ times smaller compared to the standard mechanisms. We also propose general techniques for obtaining lower bounds on restricted differentially private estimators and a lower bound on the total variation between binomial distributions, both of which might be of independent interest.


Learning architectures based on quantum entanglement: a simple matrix product state algorithm for image recognition

arXiv.org Machine Learning

It is a fundamental, but still elusive question whether methods based on quantum mechanics, in particular on quantum entanglement, can be used for classical information processing and machine learning. Even partial answer to this question would bring important insights to both fields of both machine learning and quantum mechanics. In this work, we implement simple numerical experiments, related to pattern/images classification, in which we represent the classifiers by quantum matrix product states (MPS). Classical machine learning algorithm is then applied to these quantum states. We explicitly show how quantum features (i.e., single-site and bipartite entanglement) can emerge in such represented images; entanglement characterizes here the importance of data, and this information can be practically used to improve the learning procedures. Thanks to the low demands on the dimensions and number of the unitary matrices, necessary to construct the MPS, we expect such numerical experiments could open new paths in classical machine learning, and shed at same time lights on generic quantum simulations/computations.