Plotting

 Liu, Yueyang


Neural Collaborative Filtering to Detect Anomalies in Human Semantic Trajectories

arXiv.org Artificial Intelligence

Human trajectory anomaly detection has become increasingly important across a wide range of applications, including security surveillance and public health. However, existing trajectory anomaly detection methods are primarily focused on vehicle-level traffic, while human-level trajectory anomaly detection remains under-explored. Since human trajectory data is often very sparse, machine learning methods have become the preferred approach for identifying complex patterns. However, concerns regarding potential biases and the robustness of these models have intensified the demand for more transparent and explainable alternatives. In response to these challenges, our research focuses on developing a lightweight anomaly detection model specifically designed to detect anomalies in human trajectories. We propose a Neural Collaborative Filtering approach to model and predict normal mobility. Our method is designed to model users' daily patterns of life without requiring prior knowledge, thereby enhancing performance in scenarios where data is sparse or incomplete, such as in cold start situations. Our algorithm consists of two main modules. The first is the collaborative filtering module, which applies collaborative filtering to model normal mobility of individual humans to places of interest. The second is the neural module, responsible for interpreting the complex spatio-temporal relationships inherent in human trajectory data. To validate our approach, we conducted extensive experiments using simulated and real-world datasets comparing to numerous state-of-the-art trajectory anomaly detection approaches.


Non-Stationary Contextual Bandit Learning via Neural Predictive Ensemble Sampling

arXiv.org Artificial Intelligence

Real-world applications of contextual bandits often exhibit non-stationarity due to seasonality, serendipity, and evolving social trends. While a number of non-stationary contextual bandit learning algorithms have been proposed in the literature, they excessively explore due to a lack of prioritization for information of enduring value, or are designed in ways that do not scale in modern applications with high-dimensional user-specific features and large action set, or both. In this paper, we introduce a novel non-stationary contextual bandit algorithm that addresses these concerns. It combines a scalable, deep-neural-network-based architecture with a carefully designed exploration mechanism that strategically prioritizes collecting information with the most lasting value in a non-stationary environment. Through empirical evaluations on two real-world recommendation datasets, which exhibit pronounced non-stationarity, we demonstrate that our approach significantly outperforms the state-of-the-art baselines.


Continual Learning as Computationally Constrained Reinforcement Learning

arXiv.org Artificial Intelligence

An agent that efficiently accumulates knowledge to develop increasingly sophisticated skills over a long lifetime could advance the frontier of artificial intelligence capabilities. The design of such agents, which remains a long-standing challenge of artificial intelligence, is addressed by the subject of continual learning. This monograph clarifies and formalizes concepts of continual learning, introducing a framework and set of tools to stimulate further research.


A Definition of Non-Stationary Bandits

arXiv.org Artificial Intelligence

Despite the subject of non-stationary bandit learning having attracted much recent attention, we have yet to identify a formal definition of non-stationarity that can consistently distinguish non-stationary bandits from stationary ones. Prior work has characterized non-stationary bandits as bandits for which the reward distribution changes over time. We demonstrate that this definition can ambiguously classify the same bandit as both stationary and non-stationary; this ambiguity arises in the existing definition's dependence on the latent sequence of reward distributions. Moreover, the definition has given rise to two widely used notions of regret: the dynamic regret and the weak regret. These notions are not indicative of qualitative agent performance in some bandits. Additionally, this definition of non-stationary bandits has led to the design of agents that explore excessively. We introduce a formal definition of non-stationary bandits that resolves these issues. Our new definition provides a unified approach, applicable seamlessly to both Bayesian and frequentist formulations of bandits. Furthermore, our definition ensures consistent classification of two bandits offering agents indistinguishable experiences, categorizing them as either both stationary or both non-stationary. This advancement provides a more robust framework for non-stationary bandit learning.


Non-Stationary Bandit Learning via Predictive Sampling

arXiv.org Artificial Intelligence

Thompson sampling has proven effective across a wide range of stationary bandit environments. However, as we demonstrate in this paper, it can perform poorly when applied to non-stationary environments. We attribute such failures to the fact that, when exploring, the algorithm does not differentiate actions based on how quickly the information acquired loses its usefulness due to non-stationarity. Building upon this insight, we propose predictive sampling, an algorithm that deprioritizes acquiring information that quickly loses usefulness. A theoretical guarantee on the performance of predictive sampling is established through a Bayesian regret bound. We provide versions of predictive sampling for which computations tractably scale to complex bandit environments of practical interest. Through numerical simulations, we demonstrate that predictive sampling outperforms Thompson sampling in all non-stationary environments examined.


A Black-box NLP Classifier Attacker

arXiv.org Artificial Intelligence

Deep neural networks have a wide range of applications in solving various real-world tasks and have achieved satisfactory results, in domains such as computer vision, image classification, and natural language processing. Meanwhile, the security and robustness of neural networks have become imperative, as diverse researches have shown the vulnerable aspects of neural networks. Case in point, in Natural language processing tasks, the neural network may be fooled by an attentively modified text, which has a high similarity to the original one. As per previous research, most of the studies are focused on the image domain; Different from image adversarial attacks, the text is represented in a discrete sequence, traditional image attack methods are not applicable in the NLP field. In this paper, we propose a word-level NLP sentiment classifier attack model, which includes a self-attention mechanism-based word selection method and a greedy search algorithm for word substitution. We experiment with our attack model by attacking GRU and 1D-CNN victim models on IMDB datasets. Experimental results demonstrate that our model achieves a higher attack success rate and more efficient than previous methods due to the efficient word selection algorithms are employed and minimized the word substitute number. Also, our model is transferable, which can be used in the image domain with several modifications.


A Semi-Supervised Framework for Misinformation Detection

arXiv.org Artificial Intelligence

The spread of misinformation in social media outlets has become a prevalent societal problem and is the cause of many kinds of social unrest. Curtailing its prevalence is of great importance and machine learning has shown significant promise. However, there are two main challenges when applying machine learning to this problem. First, while much too prevalent in one respect, misinformation, actually, represents only a minor proportion of all the postings seen on social media. Second, labeling the massive amount of data necessary to train a useful classifier becomes impractical. Considering these challenges, we propose a simple semi-supervised learning framework in order to deal with extreme class imbalances that has the advantage, over other approaches, of using actual rather than simulated data to inflate the minority class. We tested our framework on two sets of Covid-related Twitter data and obtained significant improvement in F1-measure on extremely imbalanced scenarios, as compared to simple classical and deep-learning data generation methods such as SMOTE, ADASYN, or GAN-based data generation.


Brain Model State Space Reconstruction Using an LSTM Neural Network

arXiv.org Artificial Intelligence

Objective Kalman filtering has previously been applied to track neural model states and parameters, particularly at the scale relevant to EEG. However, this approach lacks a reliable method to determine the initial filter conditions and assumes that the distribution of states remains Gaussian. This study presents an alternative, data-driven method to track the states and parameters of neural mass models (NMMs) from EEG recordings using deep learning techniques, specifically an LSTM neural network. Approach An LSTM filter was trained on simulated EEG data generated by a neural mass model using a wide range of parameters. With an appropriately customised loss function, the LSTM filter can learn the behaviour of NMMs. As a result, it can output the state vector and parameters of NMMs given observation data as the input. Main Results Test results using simulated data yielded correlations with R squared of around 0.99 and verified that the method is robust to noise and can be more accurate than a nonlinear Kalman filter when the initial conditions of the Kalman filter are not accurate. As an example of real-world application, the LSTM filter was also applied to real EEG data that included epileptic seizures, and revealed changes in connectivity strength parameters at the beginnings of seizures. Significance Tracking the state vector and parameters of mathematical brain models is of great importance in the area of brain modelling, monitoring, imaging and control. This approach has no need to specify the initial state vector and parameters, which is very difficult to do in practice because many of the variables being estimated cannot be measured directly in physiological experiments. This method may be applied using any neural mass model and, therefore, provides a general, novel, efficient approach to estimate brain model variables that are often difficult to measure.


Gaussian Imagination in Bandit Learning

arXiv.org Machine Learning

Assuming distributions are Gaussian often facilitates computations that are otherwise intractable. We consider an agent who is designed to attain a low information ratio with respect to a bandit environment with a Gaussian prior distribution and a Gaussian likelihood function, but study the agent's performance when applied instead to a Bernoulli bandit. We establish a bound on the increase in Bayesian regret when an agent interacts with the Bernoulli bandit, relative to an information-theoretic bound satisfied with the Gaussian bandit. If the Gaussian prior distribution and likelihood function are sufficiently diffuse, this increase grows with the square-root of the time horizon, and thus the per-timestep increase vanishes. Our results formalize the folklore that so-called Bayesian agents remain effective when instantiated with diffuse misspecified distributions.