Liu, Yang
Language-TPP: Integrating Temporal Point Processes with Language Models for Event Analysis
Kong, Quyu, Zhang, Yixuan, Liu, Yang, Tong, Panrong, Liu, Enqi, Zhou, Feng
Temporal Point Processes (TPPs) have been widely used for event sequence modeling, but they often struggle to incorporate rich textual event descriptions effectively. Conversely, while Large Language Models (LLMs) have been shown remarkable capabilities in processing textual data, they lack mechanisms for handling temporal dynamics. To bridge this gap, we introduce Language-TPP, a unified framework that integrates TPPs with LLMs for enhanced event sequence modeling. Language-TPP introduces a novel temporal encoding mechanism that converts continuous time intervals into specialized byte-tokens, enabling seamless integration with standard LLM architectures. This approach allows Language-TPP to achieve state-of-the-art performance across multiple TPP tasks, including event time prediction, type prediction, and intensity estimation, on five datasets. Additionally, we demonstrate that incorporating temporal information significantly improves the quality of generated event descriptions.
Learning Counterfactual Outcomes Under Rank Preservation
Wu, Peng, Li, Haoxuan, Zheng, Chunyuan, Zeng, Yan, Chen, Jiawei, Liu, Yang, Guo, Ruocheng, Zhang, Kun
Counterfactual inference aims to estimate the counterfactual outcome at the individual level given knowledge of an observed treatment and the factual outcome, with broad applications in fields such as epidemiology, econometrics, and management science. Previous methods rely on a known structural causal model (SCM) or assume the homogeneity of the exogenous variable and strict monotonicity between the outcome and exogenous variable. In this paper, we propose a principled approach for identifying and estimating the counterfactual outcome. We first introduce a simple and intuitive rank preservation assumption to identify the counterfactual outcome without relying on a known structural causal model. Building on this, we propose a novel ideal loss for theoretically unbiased learning of the counterfactual outcome and further develop a kernel-based estimator for its empirical estimation. Our theoretical analysis shows that the rank preservation assumption is not stronger than the homogeneity and strict monotonicity assumptions, and shows that the proposed ideal loss is convex, and the proposed estimator is unbiased. Extensive semi-synthetic and real-world experiments are conducted to demonstrate the effectiveness of the proposed method.
Jakiro: Boosting Speculative Decoding with Decoupled Multi-Head via MoE
Huang, Haiduo, Yang, Fuwei, Liu, Zhenhua, Xu, Yixing, Li, Jinze, Liu, Yang, Yin, Xuanwu, Li, Dong, Ren, Pengju, Barsoum, Emad
Speculative decoding (SD) accelerates large language model inference by using a smaller draft model to predict multiple tokens, which are then verified in parallel by the larger target model. However, the limited capacity of the draft model often necessitates tree-based sampling to improve prediction accuracy, where multiple candidates are generated at each step. We identify a key limitation in this approach: the candidates at the same step are derived from the same representation, limiting diversity and reducing overall effectiveness. To address this, we propose Jakiro, leveraging Mixture of Experts (MoE), where independent experts generate diverse predictions, effectively decoupling correlations among candidates. Furthermore, we introduce a hybrid inference strategy, combining autoregressive decoding for initial tokens with parallel decoding for subsequent stages, and enhance the latter with contrastive mechanism in features to improve accuracy. Our method significantly boosts prediction accuracy and achieves higher inference speedups. Extensive experiments across diverse models validate the effectiveness and robustness of our approach, establishing a new SOTA in speculative decoding. Our codes are available at https://github.com/haiduo/Jakiro.
BF-GAN: Development of an AI-driven Bubbly Flow Image Generation Model Using Generative Adversarial Networks
Zhou, Wen, Miwa, Shuichiro, Liu, Yang, Okamoto, Koji
A generative AI architecture called bubbly flow generative adversarial networks (BF-GAN) is developed, designed to generate realistic and high-quality bubbly flow images through physically conditioned inputs, jg and jf. Initially, 52 sets of bubbly flow experiments under varying conditions are conducted to collect 140,000 bubbly flow images with physical labels of jg and jf for training data. A multi-scale loss function is then developed, incorporating mismatch loss and pixel loss to enhance the generative performance of BF-GAN further. Regarding evaluative metrics of generative AI, the BF-GAN has surpassed conventional GAN. Physically, key parameters of bubbly flow generated by BF-GAN are extracted and compared with measurement values and empirical correlations, validating BF-GAN's generative performance. The comparative analysis demonstrate that the BF-GAN can generate realistic and high-quality bubbly flow images with any given jg and jf within the research scope. BF-GAN offers a generative AI solution for two-phase flow research, substantially lowering the time and cost required to obtain high-quality data. In addition, it can function as a benchmark dataset generator for bubbly flow detection and segmentation algorithms, enhancing overall productivity in this research domain. The BF-GAN model is available online (https://github.com/zhouzhouwen/BF-GAN).
HSI: A Holistic Style Injector for Arbitrary Style Transfer
Zhang, Shuhao, Kang, Hui, Liu, Yang, Mei, Fang, Li, Hongjuan
Attention-based arbitrary style transfer methods have gained significant attention recently due to their impressive ability to synthesize style details. However, the point-wise matching within the attention mechanism may overly focus on local patterns such that neglect the remarkable global features of style images. Additionally, when processing large images, the quadratic complexity of the attention mechanism will bring high computational load. To alleviate above problems, we propose Holistic Style Injector (HSI), a novel attention-style transformation module to deliver artistic expression of target style. Specifically, HSI performs stylization only based on global style representation that is more in line with the characteristics of style transfer, to avoid generating local disharmonious patterns in stylized images. Moreover, we propose a dual relation learning mechanism inside the HSI to dynamically render images by leveraging semantic similarity in content and style, ensuring the stylized images preserve the original content and improve style fidelity. Note that the proposed HSI achieves linear computational complexity because it establishes feature mapping through element-wise multiplication rather than matrix multiplication. Qualitative and quantitative results demonstrate that our method outperforms state-of-the-art approaches in both effectiveness and efficiency.
Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning
Pang, Jinlong, Di, Na, Zhu, Zhaowei, Wei, Jiaheng, Cheng, Hao, Qian, Chen, Liu, Yang
Recent studies show that in supervised fine-tuning (SFT) of large language models (LLMs), data quality matters more than quantity. While most data cleaning methods concentrate on filtering entire samples, the quality of individual tokens within a sample can vary significantly. After pre-training, even in high-quality samples, patterns or phrases that are not task-related can be redundant or uninformative. Continuing to fine-tune on these patterns may offer limited benefit and even degrade downstream task performance. In this paper, we investigate token quality from a noisy-label perspective and propose a generic token cleaning pipeline for SFT tasks. Our method filters out uninformative tokens while preserving those carrying key task-specific information. Specifically, we first evaluate token quality by examining the influence of model updates on each token, then apply a threshold-based separation. The token influence can be measured in a single pass with a fixed reference model or iteratively with self-evolving reference models. The benefits and limitations of both methods are analyzed theoretically by error upper bounds. Extensive experiments show that our framework consistently improves performance across multiple downstream tasks.
Contrastive Private Data Synthesis via Weighted Multi-PLM Fusion
Zou, Tianyuan, Liu, Yang, Li, Peng, Xiong, Yufei, Zhang, Jianqing, Liu, Jingjing, Ye, Xiaozhou, Ouyang, Ye, Zhang, Ya-Qin
Substantial quantity and high quality are the golden rules of making a good training dataset with sample privacy protection equally important. Generating synthetic samples that resemble high-quality private data while ensuring Differential Privacy (DP), a formal privacy guarantee, promises scalability and practicality. However, existing methods relying on pre-trained models for data synthesis %that avoid fine-tuning large pre-trained generative models often struggle in data-deficient scenarios, suffering from limited sample size, inevitable generation noise and existing pre-trained model bias. To address these challenges, we propose a novel contrAstive private data Synthesis via Weighted multiple Pre-trained language models (PLM) framework, named as WASP. WASP utilizes limited private samples for more accurate private data distribution estimation via a Top-Q voting mechanism, and leverages low-quality synthetic samples for contrastive generation via collaboration among dynamically weighted multiple pre-trained models.Extensive experiments on 6 well-developed datasets with 6 open-source and 3 closed-source PLMs demonstrate the superiority of WASP in improving model performance over diverse downstream tasks. Code is available at https://anonymous.4open.science/r/WASP.
In-Context Meta LoRA Generation
Shao, Yihua, Yan, Minxi, Liu, Yang, Chen, Siyu, Chen, Wenjie, Long, Xinwei, Yan, Ziyang, Li, Lei, Zhang, Chenyu, Sebe, Nicu, Tang, Hao, Wang, Yan, Zhao, Hao, Wang, Mengzhu, Guo, Jingcai
Low-rank Adaptation (LoRA) has demonstrated remarkable capabilities for task specific fine-tuning. However, in scenarios that involve multiple tasks, training a separate LoRA model for each one results in considerable inefficiency in terms of storage and inference. Moreover, existing parameter generation methods fail to capture the correlations among these tasks, making multi-task LoRA parameter generation challenging. To address these limitations, we propose In-Context Meta LoRA (ICM-LoRA), a novel approach that efficiently achieves task-specific customization of large language models (LLMs). Specifically, we use training data from all tasks to train a tailored generator, Conditional Variational Autoencoder (CVAE). CVAE takes task descriptions as inputs and produces task-aware LoRA weights as outputs. These LoRA weights are then merged with LLMs to create task-specialized models without the need for additional fine-tuning. Furthermore, we utilize in-context meta-learning for knowledge enhancement and task mapping, to capture the relationship between tasks and parameter distributions. As a result, our method achieves more accurate LoRA parameter generation for diverse tasks using CVAE. ICM-LoRA enables more accurate LoRA parameter reconstruction than current parameter reconstruction methods and is useful for implementing task-specific enhancements of LoRA parameters. At the same time, our method occupies 283MB, only 1\% storage compared with the original LoRA.
MetaDecorator: Generating Immersive Virtual Tours through Multimodality
Xie, Shuang, Liu, Yang, Lee, Jeannie S. A., Dong, Haiwei
Abstract--MetaDecorator, is a framework that empowers users to personalize virtual spaces. By leveraging text-driven prompts and image synthesis techniques, MetaDecorator adorns static panoramas captured by 360 imaging devices, transforming them into uniquely styled and visually appealing environments. This significantly enhances the realism and engagement of virtual tours compared to traditional offerings. Beyond the core framework, we also discuss the integration of Large Language Models (LLMs) and haptics in the VR application to provide a more immersive experience. This framework shown in FIGURE 1 a significant transformation with the introduction consists of two main stages.
Panoramic Interests: Stylistic-Content Aware Personalized Headline Generation
Lian, Junhong, Ao, Xiang, Liu, Xinyu, Liu, Yang, He, Qing
Personalized news headline generation aims to provide users with attention-grabbing headlines that are tailored to their preferences. Prevailing methods focus on user-oriented content preferences, but most of them overlook the fact that diverse stylistic preferences are integral to users' panoramic interests, leading to suboptimal personalization. In view of this, we propose a novel Stylistic-Content Aware Personalized Headline Generation (SCAPE) framework. SCAPE extracts both content and stylistic features from headlines with the aid of large language model (LLM) collaboration. It further adaptively integrates users' long- and short-term interests through a contrastive learning-based hierarchical fusion network. By incorporating the panoramic interests into the headline generator, SCAPE reflects users' stylistic-content preferences during the generation process. Extensive experiments on the real-world dataset PENS demonstrate the superiority of SCAPE over baselines.