Goto

Collaborating Authors

 Liu, Wei


LiV-GS: LiDAR-Vision Integration for 3D Gaussian Splatting SLAM in Outdoor Environments

arXiv.org Artificial Intelligence

We present LiV-GS, a LiDAR-visual SLAM system in outdoor environments that leverages 3D Gaussian as a differentiable spatial representation. Notably, LiV-GS is the first method that directly aligns discrete and sparse LiDAR data with continuous differentiable Gaussian maps in large-scale outdoor scenes, overcoming the limitation of fixed resolution in traditional LiDAR mapping. The system aligns point clouds with Gaussian maps using shared covariance attributes for front-end tracking and integrates the normal orientation into the loss function to refines the Gaussian map. To reliably and stably update Gaussians outside the LiDAR field of view, we introduce a novel conditional Gaussian constraint that aligns these Gaussians closely with the nearest reliable ones. The targeted adjustment enables LiV-GS to achieve fast and accurate mapping with novel view synthesis at a rate of 7.98 FPS. Extensive comparative experiments demonstrate LiV-GS's superior performance in SLAM, image rendering and mapping. The successful cross-modal radar-LiDAR localization highlights the potential of LiV-GS for applications in cross-modal semantic positioning and object segmentation with Gaussian maps.


Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) has become essential in modern healthcare, with large language models (LLMs) offering promising advances in clinical decision-making. Traditional model-based approaches, including those leveraging in-context demonstrations and those with specialized medical fine-tuning, have demonstrated strong performance in medical language processing but struggle with real-time adaptability, multi-step reasoning, and handling complex medical tasks. Agent-based AI systems address these limitations by incorporating reasoning traces, tool selection based on context, knowledge retrieval, and both short- and long-term memory. These additional features enable the medical AI agent to handle complex medical scenarios where decision-making should be built on real-time interaction with the environment. Therefore, unlike conventional model-based approaches that treat medical queries as isolated questions, medical AI agents approach them as complex tasks and behave more like human doctors. In this paper, we study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation. In particular, we consider the emergent o1 model and examine its impact on agents' reasoning, tool-use adaptability, and real-time information retrieval across diverse clinical scenarios, including high-stakes settings such as intensive care units (ICUs). Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools that support better patient outcomes and decision-making efficacy in clinical practice.


HELENE: Hessian Layer-wise Clipping and Gradient Annealing for Accelerating Fine-tuning LLM with Zeroth-order Optimization

arXiv.org Artificial Intelligence

Fine-tuning large language models (LLMs) poses significant memory challenges, as the back-propagation process demands extensive resources, especially with growing model sizes. Recent work, MeZO, addresses this issue using a zerothorder (ZO) optimization method, which reduces memory consumption by matching the usage to the inference phase. To overcome this limitation, we introduce HELENE, a novel scalable and memory-efficient optimizer that integrates annealed A-GNB gradients with a diagonal Hessian estimation and layerwise clipping, serving as a second-order pre-conditioner. This combination allows for faster and more stable convergence. Our theoretical analysis demonstrates that HELENE improves convergence rates, particularly for models with heterogeneous layer dimensions, by reducing the dependency on the total parameter space dimension. Furthermore, HELENE remains compatible with both full parameter tuning and parameter-efficient fine-tuning (PEFT), outperforming several state-of-the-art optimizers. The codes will be released after reviewing. LLMs have demonstrated remarkable capabilities across various downstream tasks. Fine-tuning these models has become the standard approach for improving task-specific performance, in which the firstorder optimizers like Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951), Adam (Diederik, 2014) and AdamW (Hutter & Loshchilov, 2017) are widely used.


Deceiving Question-Answering Models: A Hybrid Word-Level Adversarial Approach

arXiv.org Artificial Intelligence

Deep learning underpins most of the currently advanced natural language processing (NLP) tasks such as textual classification, neural machine translation (NMT), abstractive summarization and question-answering (QA). However, the robustness of the models, particularly QA models, against adversarial attacks is a critical concern that remains insufficiently explored. This paper introduces QA-Attack (Question Answering Attack), a novel word-level adversarial strategy that fools QA models. Our attention-based attack exploits the customized attention mechanism and deletion ranking strategy to identify and target specific words within contextual passages. It creates deceptive inputs by carefully choosing and substituting synonyms, preserving grammatical integrity while misleading the model to produce incorrect responses. Our approach demonstrates versatility across various question types, particularly when dealing with extensive long textual inputs. Extensive experiments on multiple benchmark datasets demonstrate that QA-Attack successfully deceives baseline QA models and surpasses existing adversarial techniques regarding success rate, semantics changes, BLEU score, fluency and grammar error rate.


ToolPlanner: A Tool Augmented LLM for Multi Granularity Instructions with Path Planning and Feedback

arXiv.org Artificial Intelligence

Recently, tool-augmented LLMs have gained increasing attention. Given an instruction, tool-augmented LLMs can interact with various external tools in multiple rounds and provide a final answer. However, previous LLMs were trained on overly detailed instructions, which included API names or parameters, while real users would not explicitly mention these API details. This leads to a gap between trained LLMs and real-world scenarios. In addition, most works ignore whether the interaction process follows the instruction. To address these issues, we constructed a training dataset called MGToolBench, which contains statement and category-level instructions to better reflect real-world scenarios. In addition, we propose ToolPlanner, a two-stage reinforcement learning framework that utilizes path planning and two feedback mechanisms to enhance the LLM's task completion and instruction-following capabilities. Experimental results show that ToolPlanner significantly improves the Match Rate, Pass Rate and Win Rate by 26.8%, 20.2%, and 5.6% compared to the SOTA model. Human evaluation verifies that the multi-granularity instructions can better align with users' usage habits. Our data and code will be released upon acceptance.


Conditional GAN for Enhancing Diffusion Models in Efficient and Authentic Global Gesture Generation from Audios

arXiv.org Artificial Intelligence

Audio-driven simultaneous gesture generation is vital for human-computer communication, AI games, and film production. While previous research has shown promise, there are still limitations. Methods based on VAEs are accompanied by issues of local jitter and global instability, whereas methods based on diffusion models are hampered by low generation efficiency. This is because the denoising process of DDPM in the latter relies on the assumption that the noise added at each step is sampled from a unimodal distribution, and the noise values are small. DDIM borrows the idea from the Euler method for solving differential equations, disrupts the Markov chain process, and increases the noise step size to reduce the number of denoising steps, thereby accelerating generation. However, simply increasing the step size during the step-by-step denoising process causes the results to gradually deviate from the original data distribution, leading to a significant drop in the quality of the generated actions and the emergence of unnatural artifacts. In this paper, we break the assumptions of DDPM and achieves breakthrough progress in denoising speed and fidelity. Specifically, we introduce a conditional GAN to capture audio control signals and implicitly match the multimodal denoising distribution between the diffusion and denoising steps within the same sampling step, aiming to sample larger noise values and apply fewer denoising steps for high-speed generation.


RopeTP: Global Human Motion Recovery via Integrating Robust Pose Estimation with Diffusion Trajectory Prior

arXiv.org Artificial Intelligence

We present RopeTP, a novel framework that combines Robust pose estimation with a diffusion Trajectory Prior to reconstruct global human motion from videos. At the heart of RopeTP is a hierarchical attention mechanism that significantly improves context awareness, which is essential for accurately inferring the posture of occluded body parts. This is achieved by exploiting the relationships with visible anatomical structures, enhancing the accuracy of local pose estimations. The improved robustness of these local estimations allows for the reconstruction of precise and stable global trajectories. Additionally, RopeTP incorporates a diffusion trajectory model that predicts realistic human motion from local pose sequences. This model ensures that the generated trajectories are not only consistent with observed local actions but also unfold naturally over time, thereby improving the realism and stability of 3D human motion reconstruction. Extensive experimental validation shows that RopeTP surpasses current methods on two benchmark datasets, particularly excelling in scenarios with occlusions. It also outperforms methods that rely on SLAM for initial camera estimates and extensive optimization, delivering more accurate and realistic trajectories.


Contextual Representation Anchor Network to Alleviate Selection Bias in Few-Shot Drug Discovery

arXiv.org Artificial Intelligence

In the drug discovery process, the low success rate of drug candidate screening often leads to insufficient labeled data, causing the few-shot learning problem in molecular property prediction. Existing methods for few-shot molecular property prediction overlook the sample selection bias, which arises from non-random sample selection in chemical experiments. This bias in data representativeness leads to suboptimal performance. To overcome this challenge, we present a novel method named contextual representation anchor Network (CRA), where an anchor refers to a cluster center of the representations of molecules and serves as a bridge to transfer enriched contextual knowledge into molecular representations and enhance their expressiveness. CRA introduces a dual-augmentation mechanism that includes context augmentation, which dynamically retrieves analogous unlabeled molecules and captures their task-specific contextual knowledge to enhance the anchors, and anchor augmentation, which leverages the anchors to augment the molecular representations. We evaluate our approach on the MoleculeNet and FS-Mol benchmarks, as well as in domain transfer experiments. The results demonstrate that CRA outperforms the state-of-the-art by 2.60% and 3.28% in AUC and $\Delta$AUC-PR metrics, respectively, and exhibits superior generalization capabilities.


Mixture of Multicenter Experts in Multimodal Generative AI for Advanced Radiotherapy Target Delineation

arXiv.org Artificial Intelligence

Clinical experts employ diverse philosophies and strategies in patient care, influenced by regional patient populations. However, existing medical artificial intelligence (AI) models are often trained on data distributions that disproportionately reflect highly prevalent patterns, reinforcing biases and overlooking the diverse expertise of clinicians. To overcome this limitation, we introduce the Mixture of Multicenter Experts (MoME) approach. This method strategically integrates specialized expertise from diverse clinical strategies, enhancing the AI model's ability to generalize and adapt across multiple medical centers. The MoME-based multimodal target volume delineation model, trained with few-shot samples including images and clinical notes from each medical center, outperformed baseline methods in prostate cancer radiotherapy target delineation. The advantages of MoME were most pronounced when data characteristics varied across centers or when data availability was limited, demonstrating its potential for broader clinical applications. Therefore, the MoME framework enables the deployment of AI-based target volume delineation models in resource-constrained medical facilities by adapting to specific preferences of each medical center only using a few sample data, without the need for data sharing between institutions. Expanding the number of multicenter experts within the MoME framework will significantly enhance the generalizability, while also improving the usability and adaptability of clinical AI applications in the field of precision radiation oncology.


X-MOBILITY: End-To-End Generalizable Navigation via World Modeling

arXiv.org Artificial Intelligence

General-purpose navigation in challenging environments remains a significant problem in robotics, with current state-of-the-art approaches facing myriad limitations. Classical approaches struggle with cluttered settings and require extensive tuning, while learning-based methods face difficulties generalizing to out-of-distribution environments. This paper introduces X-Mobility, an end-to-end generalizable navigation model that overcomes existing challenges by leveraging three key ideas. First, X-Mobility employs an auto-regressive world modeling architecture with a latent state space to capture world dynamics. Second, a diverse set of multi-head decoders enables the model to learn a rich state representation that correlates strongly with effective navigation skills. Third, by decoupling world modeling from action policy, our architecture can train effectively on a variety of data sources, both with and without expert policies: off-policy data allows the model to learn world dynamics, while on-policy data with supervisory control enables optimal action policy learning. Through extensive experiments, we demonstrate that X-Mobility not only generalizes effectively but also surpasses current state-of-the-art navigation approaches. Additionally, X-Mobility also achieves zero-shot Sim2Real transferability and shows strong potential for cross-embodiment generalization.