Plotting

 Liu, Min


Online Spatio-Temporal Correlation-Based Federated Learning for Traffic Flow Forecasting

arXiv.org Artificial Intelligence

Traffic flow forecasting (TFF) is of great importance to the construction of Intelligent Transportation Systems (ITS). To mitigate communication burden and tackle with the problem of privacy leakage aroused by centralized forecasting methods, Federated Learning (FL) has been applied to TFF. However, existing FL-based approaches employ batch learning manner, which makes the pre-trained models inapplicable to subsequent traffic data, thus exhibiting subpar prediction performance. In this paper, we perform the first study of forecasting traffic flow adopting Online Learning (OL) manner in FL framework and then propose a novel prediction method named Online Spatio-Temporal Correlation-based Federated Learning (FedOSTC), aiming to guarantee performance gains regardless of traffic fluctuation. Specifically, clients employ Gated Recurrent Unit (GRU)-based encoders to obtain the internal temporal patterns inside traffic data sequences. Then, the central server evaluates spatial correlation among clients via Graph Attention Network (GAT), catering to the dynamic changes of spatial closeness caused by traffic fluctuation. Furthermore, to improve the generalization of the global model for upcoming traffic data, a period-aware aggregation mechanism is proposed to aggregate the local models which are optimized using Online Gradient Descent (OGD) algorithm at clients. We perform comprehensive experiments on two real-world datasets to validate the efficiency and effectiveness of our proposed method and the numerical results demonstrate the superiority of FedOSTC.


Survey of Knowledge Distillation in Federated Edge Learning

arXiv.org Artificial Intelligence

The increasing demand for intelligent services and privacy protection of mobile and Internet of Things (IoT) devices motivates the wide application of Federated Edge Learning (FEL), in which devices collaboratively train on-device Machine Learning (ML) models without sharing their private data. Limited by device hardware, diverse user behaviors and network infrastructure, the algorithm design of FEL faces challenges related to resources, personalization and network environments. Fortunately, Knowledge Distillation (KD) has been leveraged as an important technique to tackle the above challenges in FEL. In this paper, we investigate the works that KD applies to FEL, discuss the limitations and open problems of existing KD-based FEL approaches, and provide guidance for their real deployment.


A Personalized Utterance Style (PUS) based Dialogue Strategy for Efficient Service Requirement Elicitation

arXiv.org Artificial Intelligence

With the flourish of services on the Internet, a prerequisite for service providers to precisely deliver services to their customers is to capture user requirements comprehensively, accurately, and efficiently. This is called the ``Service Requirement Elicitation (SRE)'' task. Considering the amount of customers is huge, it is an inefficient way for service providers to interact with each user by face-to-face dialog. Therefore, to elicit user requirements with the assistance of virtual intelligent assistants has become a mainstream way. Since user requirements generally consist of different levels of details and need to be satisfied by services from multiple domains, there is a huge potential requirement space for SRE to explore to elicit complete requirements. Considering that traditional dialogue system with static slots cannot be directly applied to the SRE task, it is a challenge to design an efficient dialogue strategy to guide users to express their complete and accurate requirements in such a huge potential requirement space. Based on the phenomenon that users tend to express requirements subjectively in a sequential manner, we propose a Personalized Utterance Style (PUS) module to perceive the personalized requirement expression habits, and then apply PUS to an dialogue strategy to efficiently complete the SRE task. Specifically, the dialogue strategy chooses suitable response actions for dynamically updating the dialogue state. With the assistance of PUS extracted from dialogue history, the system can shrink the search scope of potential requirement space. Experiment results show that the dialogue strategy with PUS can elicit more accurate user requirements with fewer dialogue rounds.


FastATDC: Fast Anomalous Trajectory Detection and Classification

arXiv.org Artificial Intelligence

Automated detection of anomalous trajectories is an important problem with considerable applications in intelligent transportation systems. Many existing studies have focused on distinguishing anomalous trajectories from normal trajectories, ignoring the large differences between anomalous trajectories. A recent study has made great progress in identifying abnormal trajectory patterns and proposed a two-stage algorithm for anomalous trajectory detection and classification (ATDC). This algorithm has excellent performance but suffers from a few limitations, such as high time complexity and poor interpretation. Here, we present a careful theoretical and empirical analysis of the ATDC algorithm, showing that the calculation of anomaly scores in both stages can be simplified, and that the second stage of the algorithm is much more important than the first stage. Hence, we develop a FastATDC algorithm that introduces a random sampling strategy in both stages. Experimental results show that FastATDC is 10 to 20 times faster than ATDC on real datasets. Moreover, FastATDC outperforms the baseline algorithms and is comparable to the ATDC algorithm.


The MSXF TTS System for ICASSP 2022 ADD Challenge

arXiv.org Artificial Intelligence

This paper presents our MSXF TTS system for Task 3.1 of the Audio Deep Synthesis Detection (ADD) Challenge 2022. We use an end to end text to speech system, and add a constraint loss to the system when training stage. The end to end TTS system is VITS, and the pre-training self-supervised model is wav2vec 2.0. And we also explore the influence of the speech speed and volume in spoofing. The faster speech means the less the silence part in audio, the easier to fool the detector. We also find the smaller the volume, the better spoofing ability, though we normalize volume for submission. Our team is identified as C2, and we got the fourth place in the challenge.


Just Least Squares: Binary Compressive Sampling with Low Generative Intrinsic Dimension

arXiv.org Machine Learning

In this paper, we consider recovering $n$ dimensional signals from $m$ binary measurements corrupted by noises and sign flips under the assumption that the target signals have low generative intrinsic dimension, i.e., the target signals can be approximately generated via an $L$-Lipschitz generator $G: \mathbb{R}^k\rightarrow\mathbb{R}^{n}, k\ll n$. Although the binary measurements model is highly nonlinear, we propose a least square decoder and prove that, up to a constant $c$, with high probability, the least square decoder achieves a sharp estimation error $\mathcal{O} (\sqrt{\frac{k\log (Ln)}{m}})$ as long as $m\geq \mathcal{O}( k\log (Ln))$. Extensive numerical simulations and comparisons with state-of-the-art methods demonstrated the least square decoder is robust to noise and sign flips, as indicated by our theory. By constructing a ReLU network with properly chosen depth and width, we verify the (approximately) deep generative prior, which is of independent interest.


Coordinate Descent for MCP/SCAD Penalized Least Squares Converges Linearly

arXiv.org Machine Learning

Recovering sparse signals from observed data is an important topic in signal/imaging processing, statistics and machine learning. Nonconvex penalized least squares have been attracted a lot of attentions since they enjoy nice statistical properties. Computationally, coordinate descent (CD) is a workhorse for minimizing the nonconvex penalized least squares criterion due to its simplicity and scalability. In this work, we prove the linear convergence rate to CD for solving MCP/SCAD penalized least squares problems.


User Intention Recognition and Requirement Elicitation Method for Conversational AI Services

arXiv.org Artificial Intelligence

In recent years, chat-bot has become a new type of intelligent terminal to guide users to consume services. However, it is criticized most that the services it provides are not what users expect or most expect. This defect mostly dues to two problems, one is that the incompleteness and uncertainty of user's requirement expression caused by the information asymmetry, the other is that the diversity of service resources leads to the difficulty of service selection. Conversational bot is a typical mesh device, so the guided multi-rounds Q$\&$A is the most effective way to elicit user requirements. Obviously, complex Q$\&$A with too many rounds is boring and always leads to bad user experience. Therefore, we aim to obtain user requirements as accurately as possible in as few rounds as possible. To achieve this, a user intention recognition method based on Knowledge Graph (KG) was developed for fuzzy requirement inference, and a requirement elicitation method based on Granular Computing was proposed for dialog policy generation. Experimental results show that these two methods can effectively reduce the number of conversation rounds, and can quickly and accurately identify the user intention.


Deep least-squares methods: an unsupervised learning-based numerical method for solving elliptic PDEs

arXiv.org Machine Learning

The approach makes use of the deep neural network to approximate solutions of PDEs through the compositional construction and employs least-squares functionals as loss functions to determine parameters of the deep neural network. There are various least-squares functionals for a partial differential equation. This paper focuses on the so-called first-order system least-squares (FOSLS) functional studied in [3], which is based on a first-order system of scalar second-order elliptic PDEs. Numerical results for second-order elliptic PDEs in one dimension are presented.