Goto

Collaborating Authors

 Liu, Lin


Towards Fair Graph Representation Learning in Social Networks

arXiv.org Artificial Intelligence

With the widespread use of Graph Neural Networks (GNNs) for representation learning from network data, the fairness of GNN models has raised great attention lately. Fair GNNs aim to ensure that node representations can be accurately classified, but not easily associated with a specific group. Existing advanced approaches essentially enhance the generalisation of node representation in combination with data augmentation strategy, and do not directly impose constraints on the fairness of GNNs. In this work, we identify that a fundamental reason for the unfairness of GNNs in social network learning is the phenomenon of social homophily, i.e., users in the same group are more inclined to congregate. The message-passing mechanism of GNNs can cause users in the same group to have similar representations due to social homophily, leading model predictions to establish spurious correlations with sensitive attributes. Inspired by this reason, we propose a method called Equity-Aware GNN (EAGNN) towards fair graph representation learning. Specifically, to ensure that model predictions are independent of sensitive attributes while maintaining prediction performance, we introduce constraints for fair representation learning based on three principles: sufficiency, independence, and separation. We theoretically demonstrate that our EAGNN method can effectively achieve group fairness. Extensive experiments on three datasets with varying levels of social homophily illustrate that our EAGNN method achieves the state-of-the-art performance across two fairness metrics and offers competitive effectiveness.


Archilles' Heel in Semi-open LLMs: Hiding Bottom against Recovery Attacks

arXiv.org Artificial Intelligence

Closed-source large language models deliver strong performance but have limited downstream customizability. Semi-open models, combining both closed-source and public layers, were introduced to improve customizability. However, parameters in the closed-source layers are found vulnerable to recovery attacks. In this paper, we explore the design of semi-open models with fewer closed-source layers, aiming to increase customizability while ensuring resilience to recovery attacks. We analyze the contribution of closed-source layer to the overall resilience and theoretically prove that in a deep transformer-based model, there exists a transition layer such that even small recovery errors in layers before this layer can lead to recovery failure. SCARA employs a fine-tuning-free metric to estimate the maximum number of layers that can be publicly accessible for customization. We apply it to five models (1.3B to 70B parameters) to construct semi-open models, validating their customizability on six downstream tasks and assessing their resilience against various recovery attacks on sixteen benchmarks. We compare SCARA to baselines and observe that it generally improves downstream customization performance and offers similar resilience with over 10 times fewer closed-source parameters. We empirically investigate the existence of transition layers, analyze the effectiveness of our scheme and finally discuss its limitations. Open-sourcing more parameters and structure details apparently enhances downstream customizability. However, Zanella-Beguelin et al. (2021) showed that semi-open LLMs with only a few closed-source parameters are vulnerable to model recovery attacks. Recovery attackers query the closed-source module and then train a new module that imitates its functionality. This can lead to the full replication and theft of closed-source modules (Solaiman, 2023). Recovery attackers targeting fully closed-source models seek to fine-tune a new model that precisely replicates the closed-source model (Tamber et al., 2024; Dubiล„ski et al., 2024). In contrast, attackers in semi-open settings are not required to exactly replicate the closed-source module. Instead, they can fine-tune the closed-source module alongside the public module to reconstruct the overall functionality. While open-sourcing more layers enhances downstream flexibility, it also facilitates easier replication.


Mitigating Propensity Bias of Large Language Models for Recommender Systems

arXiv.org Artificial Intelligence

The rapid development of Large Language Models (LLMs) creates new opportunities for recommender systems, especially by exploiting the side information (e.g., descriptions and analyses of items) generated by these models. However, aligning this side information with collaborative information from historical interactions poses significant challenges. The inherent biases within LLMs can skew recommendations, resulting in distorted and potentially unfair user experiences. On the other hand, propensity bias causes side information to be aligned in such a way that it often tends to represent all inputs in a low-dimensional subspace, leading to a phenomenon known as dimensional collapse, which severely restricts the recommender system's ability to capture user preferences and behaviours. To address these issues, we introduce a novel framework named Counterfactual LLM Recommendation (CLLMR). Specifically, we propose a spectrum-based side information encoder that implicitly embeds structural information from historical interactions into the side information representation, thereby circumventing the risk of dimension collapse. Furthermore, our CLLMR approach explores the causal relationships inherent in LLM-based recommender systems. By leveraging counterfactual inference, we counteract the biases introduced by LLMs. Extensive experiments demonstrate that our CLLMR approach consistently enhances the performance of various recommender models.


TSI: A Multi-View Representation Learning Approach for Time Series Forecasting

arXiv.org Artificial Intelligence

As the growing demand for long sequence time-series forecasting in real-world applications, such as electricity consumption planning, the significance of time series forecasting becomes increasingly crucial across various domains. This is highlighted by recent advancements in representation learning within the field. This study introduces a novel multi-view approach for time series forecasting that innovatively integrates trend and seasonal representations with an Independent Component Analysis (ICA)-based representation. Recognizing the limitations of existing methods in representing complex and high-dimensional time series data, this research addresses the challenge by combining TS (trend and seasonality) and ICA (independent components) perspectives. This approach offers a holistic understanding of time series data, going beyond traditional models that often miss nuanced, nonlinear relationships. The efficacy of TSI model is demonstrated through comprehensive testing on various benchmark datasets, where it shows superior performance over current state-of-the-art models, particularly in multivariate forecasting. This method not only enhances the accuracy of forecasting but also contributes significantly to the field by providing a more in-depth understanding of time series data. The research which uses ICA for a view lays the groundwork for further exploration and methodological advancements in time series forecasting, opening new avenues for research and practical applications.


CWT-Net: Super-resolution of Histopathology Images Using a Cross-scale Wavelet-based Transformer

arXiv.org Artificial Intelligence

Super-resolution (SR) aims to enhance the quality of low-resolution images and has been widely applied in medical imaging. We found that the design principles of most existing methods are influenced by SR tasks based on real-world images and do not take into account the significance of the multi-level structure in pathological images, even if they can achieve respectable objective metric evaluations. In this work, we delve into two super-resolution working paradigms and propose a novel network called CWT-Net, which leverages cross-scale image wavelet transform and Transformer architecture. Our network consists of two branches: one dedicated to learning super-resolution and the other to high-frequency wavelet features. To generate high-resolution histopathology images, the Transformer module shares and fuses features from both branches at various stages. Notably, we have designed a specialized wavelet reconstruction module to effectively enhance the wavelet domain features and enable the network to operate in different modes, allowing for the introduction of additional relevant information from cross-scale images. Our experimental results demonstrate that our model significantly outperforms state-of-the-art methods in both performance and visualization evaluations and can substantially boost the accuracy of image diagnostic networks.


Mini Honor of Kings: A Lightweight Environment for Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

Games are widely used as research environments for multi-agent reinforcement learning (MARL), but they pose three significant challenges: limited customization, high computational demands, and oversimplification. To address these issues, we introduce the first publicly available map editor for the popular mobile game Honor of Kings and design a lightweight environment, Mini Honor of Kings (Mini HoK), for researchers to conduct experiments. Mini HoK is highly efficient, allowing experiments to be run on personal PCs or laptops while still presenting sufficient challenges for existing MARL algorithms. We have tested our environment on common MARL algorithms and demonstrated that these algorithms have yet to find optimal solutions within this environment. This facilitates the dissemination and advancement of MARL methods within the research community. Additionally, we hope that more researchers will leverage the Honor of Kings map editor to develop innovative and scientifically valuable new maps. Our code and user manual are available at: https://github.com/tencent-ailab/mini-hok.


Unsupervised Few-Shot Continual Learning for Remote Sensing Image Scene Classification

arXiv.org Artificial Intelligence

A continual learning (CL) model is desired for remote sensing image analysis because of varying camera parameters, spectral ranges, resolutions, etc. There exist some recent initiatives to develop CL techniques in this domain but they still depend on massive labelled samples which do not fully fit remote sensing applications because ground truths are often obtained via field-based surveys. This paper addresses this problem with a proposal of unsupervised flat-wide learning approach (UNISA) for unsupervised few-shot continual learning approaches of remote sensing image scene classifications which do not depend on any labelled samples for its model updates. UNISA is developed from the idea of prototype scattering and positive sampling for learning representations while the catastrophic forgetting problem is tackled with the flat-wide learning approach combined with a ball generator to address the data scarcity problem. Our numerical study with remote sensing image scene datasets and a hyperspectral dataset confirms the advantages of our solution. Source codes of UNISA are shared publicly in \url{https://github.com/anwarmaxsum/UNISA} to allow convenient future studies and reproductions of our numerical results.


A Preference-oriented Diversity Model Based on Mutual-information in Re-ranking for E-commerce Search

arXiv.org Artificial Intelligence

Re-ranking is a process of rearranging ranking list to more effectively meet user demands by accounting for the interrelationships between items. Existing methods predominantly enhance the precision of search results, often at the expense of diversity, leading to outcomes that may not fulfill the varied needs of users. Conversely, methods designed to promote diversity might compromise the precision of the results, failing to satisfy the users' requirements for accuracy. To alleviate the above problems, this paper proposes a Preference-oriented Diversity Model Based on Mutual-information (PODM-MI), which consider both accuracy and diversity in the re-ranking process. Specifically, PODM-MI adopts Multidimensional Gaussian distributions based on variational inference to capture users' diversity preferences with uncertainty. Then we maximize the mutual information between the diversity preferences of the users and the candidate items using the maximum variational inference lower bound to enhance their correlations. Subsequently, we derive a utility matrix based on the correlations, enabling the adaptive ranking of items in line with user preferences and establishing a balance between the aforementioned objectives. Experimental results on real-world online e-commerce systems demonstrate the significant improvements of PODM-MI, and we have successfully deployed PODM-MI on an e-commerce search platform.


Mixup Domain Adaptations for Dynamic Remaining Useful Life Predictions

arXiv.org Machine Learning

Mixup Domain Adaptations for Dynamic Remaining Useful Life Predictions Muhammad Furqon, Mahardhika Pratama, Lin Liu, Habibullah Habibullah, Kutluyil Dogancay We propose mix-up domain adaptation for time-series unsupervised domain adaptation. MDAN is applied to dynamic remaining useful life predictions and fault diagnosis. We propose a self-supervised learning method via a controlled reconstruction learning. Abstract Remaining Useful Life (RUL) predictions play vital role for asset planning and maintenance leading to many benefits to industries such as reduced downtime, low maintenance costs, etc. Although various efforts have been devoted to study this topic, most existing works are restricted for i.i.d conditions assuming the same condition of the training phase and the deployment phase. This paper proposes a solution to this problem where a mix-up domain adaptation (MDAN) is put forward. MDAN encompasses a three-staged mechanism where the mix-up strategy is not only performed to regularize the source and target domains but also applied to establish an intermediate mix-up domain where the source and target domains are aligned. The self-supervised learning strategy is implemented to prevent the supervision collapse problem. Rigorous evaluations have been performed where MDAN is compared to recently published works for dynamic RUL predictions.


RCoCo: Contrastive Collective Link Prediction across Multiplex Network in Riemannian Space

arXiv.org Artificial Intelligence

Link prediction typically studies the probability of future interconnection among nodes with the observation in a single social network. More often than not, real scenario is presented as a multiplex network with common (anchor) users active in multiple social networks. In the literature, most existing works study either the intra-link prediction in a single network or inter-link prediction among networks (a.k.a. network alignment), and consider two learning tasks are independent from each other, which is still away from the fact. On the representation space, the vast majority of existing methods are built upon the traditional Euclidean space, unaware of the inherent geometry of social networks. The third issue is on the scarce anchor users. Annotating anchor users is laborious and expensive, and thus it is impractical to work with quantities of anchor users. Herein, in light of the issues above, we propose to study a challenging yet practical problem of Geometry-aware Collective Link Prediction across Multiplex Network. To address this problem, we present a novel contrastive model, RCoCo, which collaborates intra- and inter-network behaviors in Riemannian spaces. In RCoCo, we design a curvature-aware graph attention network ($\kappa-$GAT), conducting attention mechanism in Riemannian manifold whose curvature is estimated by the Ricci curvatures over the network. Thereafter, we formulate intra- and inter-contrastive loss in the manifolds, in which we augment graphs by exploring the high-order structure of community and information transfer on anchor users. Finally, we conduct extensive experiments with 14 strong baselines on 8 real-world datasets, and show the effectiveness of RCoCo.