Liu, Huan
Content-Aware Point of Interest Recommendation on Location-Based Social Networks
Gao, Huiji (Arizona State University) | Tang, Jiliang (Arizona State University) | Hu, Xia (Arizona State University) | Liu, Huan (Arizona State University)
The rapid urban expansion has greatly extended the physical boundary of users' living area and developed a large number of POIs (points of interest). POI recommendation is a task that facilitates users' urban exploration and helps them filter uninteresting POIs for decision making. While existing work of POI recommendation on location-based social networks (LBSNs) discovers the spatial, temporal, and social patterns of user check-in behavior, the use of content information has not been systematically studied. The various types of content information available on LBSNs could be related to different aspects of a user's check-in action, providing a unique opportunity for POI recommendation. In this work, we study the content information on LBSNs w.r.t. POI properties, user interests, and sentiment indications. We model the three types of information under a unified POI recommendation framework with the consideration of their relationship to check-in actions. The experimental results exhibit the significance of content information in explaining user behavior, and demonstrate its power to improve POI recommendation performance on LBSNs.
Online Social Spammer Detection
Hu, Xia (Arizona State University) | Tang, Jiliang (Arizona State University) | Liu, Huan (Arizona State University)
The explosive use of social media also makes it a popular platform for malicious users, known as social spammers, to overwhelm normal users with unwanted content. One effective way for social spammer detection is to build a classifier based on content and social network information. However, social spammers are sophisticated and adaptable to game the system with fast evolving content and network patterns. First, social spammers continually change their spamming content patterns to avoid being detected. Second, reflexive reciprocity makes it easier for social spammers to establish social influence and pretend to be normal users by quickly accumulating a large number of "human" friends. It is challenging for existing anti-spamming systems based on batch-mode learning to quickly respond to newly emerging patterns for effective social spammer detection. In this paper, we present a general optimization framework to collectively use content and network information for social spammer detection, and provide the solution for efficient online processing. Experimental results on Twitter datasets confirm the effectiveness and efficiency of the proposed framework.
Exploring Social-Historical Ties on Location-Based Social Networks
Gao, Huiji (Arizona State University) | Tang, Jiliang (Arizona State University) | Liu, Huan (Arizona State University)
Location-based social networks (LBSNs) have become a popular form of social media in recent years. They provide location related services that allow users to "check-in'' at geographical locations and share such experiences with their friends. Millions of "check-in'' records in LBSNs contain rich information of social and geographical context and provide a unique opportunity for researchers to study user's social behavior from a spatial-temporal aspect, which in turn enables a variety of services including place advertisement, traffic forecasting, and disaster relief. In this paper, we propose a social-historical model to explore user's check-in behavior on LBSNs. Our model integrates the social and historical effects and assesses the role of social correlation in user's check-in behavior. In particular, our model captures the property of user's check-in history in forms of power-law distribution and short-term effect, and helps in explaining user's check-in behavior. The experimental results on a real world LBSN demonstrate that our approach properly models user's check-ins and shows how social and historical ties can help location prediction.
Efficient Spectral Feature Selection with Minimum Redundancy
Zhao, Zheng (Arizona State University) | Wang, Lei (The Australian National University) | Liu, Huan (Arizona State University)
Spectral feature selection identifies relevant features by measuring their capability of preserving sample similarity. It provides a powerful framework for both supervised and unsupervised feature selection, and has been proven to be effective in many real-world applications. One common drawback associated with most existing spectral feature selection algorithms is that they evaluate features individually and cannot identify redundant features. Since redundant features can have significant adverse effect on learning performance, it is necessary to address this limitation for spectral feature selection. To this end, we propose a novel spectral feature selection algorithm to handle feature redundancy, adopting an embedded model. The algorithm is derived from a formulation based on a sparse multi-output regression with a L 2,1 -norm constraint. We conduct theoretical analysis on the properties of its optimal solutions, paving the way for designing an efficient path-following solver. Extensive experiments show that the proposed algorithm can do well in both selecting relevant features and removing redundancy.