Goto

Collaborating Authors

 Liu, Hongbin


DaFoEs: Mixing Datasets towards the generalization of vision-state deep-learning Force Estimation in Minimally Invasive Robotic Surgery

arXiv.org Artificial Intelligence

Precisely determining the contact force during safe interaction in Minimally Invasive Robotic Surgery (MIRS) is still an open research challenge. Inspired by post-operative qualitative analysis from surgical videos, the use of cross-modality data driven deep neural network models has been one of the newest approaches to predict sensorless force trends. However, these methods required for large and variable datasets which are not currently available. In this paper, we present a new vision-haptic dataset (DaFoEs) with variable soft environments for the training of deep neural models. In order to reduce the bias from a single dataset, we present a pipeline to generalize different vision and state data inputs for mixed dataset training, using a previously validated dataset with different setup. Finally, we present a variable encoder-decoder architecture to predict the forces done by the laparoscopic tool using single input or sequence of inputs. For input sequence, we use a recurrent decoder, named with the prefix R, and a new temporal sampling to represent the acceleration of the tool. During our training, we demonstrate that single dataset training tends to overfit to the training data domain, but has difficulties on translating the results across new domains. However, dataset mixing presents a good translation with a mean relative estimated force error of 5% and 12% for the recurrent and non-recurrent models respectively. Our method, also marginally increase the effectiveness of transformers for force estimation up to a maximum of ~15%, as the volume of available data is increase by 150%. In conclusion, we demonstrate that mixing experimental set ups for vision-state force estimation in MIRS is a possible approach towards the general solution of the problem.


PWISeg: Point-based Weakly-supervised Instance Segmentation for Surgical Instruments

arXiv.org Artificial Intelligence

In surgical procedures, correct instrument counting is essential. Instance segmentation is a location method that locates not only an object's bounding box but also each pixel's specific details. However, obtaining mask-level annotations is labor-intensive in instance segmentation. To address this issue, we propose a novel yet effective weakly-supervised surgical instrument instance segmentation approach, named Point-based Weakly-supervised Instance Segmentation (PWISeg). PWISeg adopts an FCN-based architecture with point-to-box and point-to-mask branches to model the relationships between feature points and bounding boxes, as well as feature points and segmentation masks on FPN, accomplishing instrument detection and segmentation jointly in a single model. Since mask level annotations are hard to available in the real world, for point-to-mask training, we introduce an unsupervised projection loss, utilizing the projected relation between predicted masks and bboxes as supervision signal. On the other hand, we annotate a few pixels as the key pixel for each instrument. Based on this, we further propose a key pixel association loss and a key pixel distribution loss, driving the point-to-mask branch to generate more accurate segmentation predictions. To comprehensively evaluate this task, we unveil a novel surgical instrument dataset with manual annotations, setting up a benchmark for further research. Our comprehensive research trial validated the superior performance of our PWISeg. The results show that the accuracy of surgical instrument segmentation is improved, surpassing most methods of instance segmentation via weakly supervised bounding boxes. This improvement is consistently observed in our proposed dataset and when applied to the public HOSPI-Tools dataset.


SurgPLAN: Surgical Phase Localization Network for Phase Recognition

arXiv.org Artificial Intelligence

Surgical phase recognition is crucial to providing surgery understanding in smart operating rooms. Despite great progress in automatic surgical phase recognition, most existing methods are still restricted by two problems. First, these methods cannot capture discriminative visual features for each frame and motion information with simple 2D networks. Second, the frame-by-frame recognition paradigm degrades the performance due to unstable predictions within each phase, termed as phase shaking. To address these two challenges, we propose a Surgical Phase LocAlization Network, named SurgPLAN, to facilitate a more accurate and stable surgical phase recognition with the principle of temporal detection. Specifically, we first devise a Pyramid SlowFast (PSF) architecture to serve as the visual backbone to capture multi-scale spatial and temporal features by two branches with different frame sampling rates. Moreover, we propose a Temporal Phase Localization (TPL) module to generate the phase prediction based on temporal region proposals, which ensures accurate and consistent predictions within each surgical phase. Extensive experiments confirm the significant advantages of our SurgPLAN over frame-by-frame approaches in terms of both accuracy and stability.


CorruptEncoder: Data Poisoning based Backdoor Attacks to Contrastive Learning

arXiv.org Artificial Intelligence

Contrastive learning (CL) pre-trains general-purpose encoders using an unlabeled pre-training dataset, which consists of images or image-text pairs. CL is vulnerable to data poisoning based backdoor attacks (DPBAs), in which an attacker injects poisoned inputs into the pre-training dataset so the encoder is backdoored. However, existing DPBAs achieve limited effectiveness. In this work, we take the first step to analyze the limitations of existing attacks and propose new DPBAs called CorruptEncoder to CL. CorruptEncoder uses a theory-guided method to create optimal poisoned inputs to maximize attack effectiveness. Our experiments show that CorruptEncoder substantially outperforms existing DPBAs. In particular, CorruptEncoder is the first DPBA that achieves more than 90% attack success rates with only a few (3) reference images and a small poisoning ratio (0.5%). Moreover, we also propose a defense, called localized cropping, to defend against DPBAs. Our results show that our defense can reduce the effectiveness of DPBAs, but it sacrifices the utility of the encoder, highlighting the need for new defenses.


LEGO: Learning and Graph-Optimized Modular Tracker for Online Multi-Object Tracking with Point Clouds

arXiv.org Artificial Intelligence

Online multi-object tracking (MOT) plays a pivotal role in autonomous systems. The state-of-the-art approaches usually employ a tracking-by-detection method, and data association plays a critical role. This paper proposes a learning and graph-optimized (LEGO) modular tracker to improve data association performance in the existing literature. The proposed LEGO tracker integrates graph optimization and self-attention mechanisms, which efficiently formulate the association score map, facilitating the accurate and efficient matching of objects across time frames. To further enhance the state update process, the Kalman filter is added to ensure consistent tracking by incorporating temporal coherence in the object states. Our proposed method utilizing LiDAR alone has shown exceptional performance compared to other online tracking approaches, including LiDAR-based and LiDAR-camera fusion-based methods. LEGO ranked 1st at the time of submitting results to KITTI object tracking evaluation ranking board and remains 2nd at the time of submitting this paper, among all online trackers in the KITTI MOT benchmark for cars1


10 Security and Privacy Problems in Large Foundation Models

arXiv.org Artificial Intelligence

Foundation models--such as GPT, CLIP, and DINO--have achieved revolutionary progress in the past several years and are commonly believed to be a promising approach for general-purpose AI. In particular, self-supervised learning is adopted to pre-train a foundation model using a large amount of unlabeled data. A pre-trained foundation model is like an ``operating system'' of the AI ecosystem. Specifically, a foundation model can be used as a feature extractor for many downstream tasks with little or no labeled training data. Existing studies on foundation models mainly focused on pre-training a better foundation model to improve its performance on downstream tasks in non-adversarial settings, leaving its security and privacy in adversarial settings largely unexplored. A security or privacy issue of a pre-trained foundation model leads to a single point of failure for the AI ecosystem. In this book chapter, we discuss 10 basic security and privacy problems for the pre-trained foundation models, including six confidentiality problems, three integrity problems, and one availability problem. For each problem, we discuss potential opportunities and challenges. We hope our book chapter will inspire future research on the security and privacy of foundation models.


PointCert: Point Cloud Classification with Deterministic Certified Robustness Guarantees

arXiv.org Artificial Intelligence

Point cloud classification is an essential component in many security-critical applications such as autonomous driving and augmented reality. However, point cloud classifiers are vulnerable to adversarially perturbed point clouds. Existing certified defenses against adversarial point clouds suffer from a key limitation: their certified robustness guarantees are probabilistic, i.e., they produce an incorrect certified robustness guarantee with some probability. In this work, we propose a general framework, namely PointCert, that can transform an arbitrary point cloud classifier to be certifiably robust against adversarial point clouds with deterministic guarantees. PointCert certifiably predicts the same label for a point cloud when the number of arbitrarily added, deleted, and/or modified points is less than a threshold. Moreover, we propose multiple methods to optimize the certified robustness guarantees of PointCert in three application scenarios. We systematically evaluate PointCert on ModelNet and ScanObjectNN benchmark datasets. Our results show that PointCert substantially outperforms state-of-the-art certified defenses even though their robustness guarantees are probabilistic.


PoisonedEncoder: Poisoning the Unlabeled Pre-training Data in Contrastive Learning

arXiv.org Artificial Intelligence

Contrastive learning pre-trains an image encoder using a large amount of unlabeled data such that the image encoder can be used as a general-purpose feature extractor for various downstream tasks. In this work, we propose PoisonedEncoder, a data poisoning attack to contrastive learning. In particular, an attacker injects carefully crafted poisoning inputs into the unlabeled pre-training data, such that the downstream classifiers built based on the poisoned encoder for multiple target downstream tasks simultaneously classify attacker-chosen, arbitrary clean inputs as attacker-chosen, arbitrary classes. We formulate our data poisoning attack as a bilevel optimization problem, whose solution is the set of poisoning inputs; and we propose a contrastive-learning-tailored method to approximately solve it. Our evaluation on multiple datasets shows that PoisonedEncoder achieves high attack success rates while maintaining the testing accuracy of the downstream classifiers built upon the poisoned encoder for non-attacker-chosen inputs. We also evaluate five defenses against PoisonedEncoder, including one pre-processing, three in-processing, and one post-processing defenses. Our results show that these defenses can decrease the attack success rate of PoisonedEncoder, but they also sacrifice the utility of the encoder or require a large clean pre-training dataset.


Pre-trained Encoders in Self-Supervised Learning Improve Secure and Privacy-preserving Supervised Learning

arXiv.org Artificial Intelligence

Classifiers in supervised learning have various security and privacy issues, e.g., 1) data poisoning attacks, backdoor attacks, and adversarial examples on the security side as well as 2) inference attacks and the right to be forgotten for the training data on the privacy side. Various secure and privacy-preserving supervised learning algorithms with formal guarantees have been proposed to address these issues. However, they suffer from various limitations such as accuracy loss, small certified security guarantees, and/or inefficiency. Self-supervised learning is an emerging technique to pre-train encoders using unlabeled data. Given a pre-trained encoder as a feature extractor, supervised learning can train a simple yet accurate classifier using a small amount of labeled training data. In this work, we perform the first systematic, principled measurement study to understand whether and when a pre-trained encoder can address the limitations of secure or privacy-preserving supervised learning algorithms. Our key findings are that a pre-trained encoder substantially improves 1) both accuracy under no attacks and certified security guarantees against data poisoning and backdoor attacks of state-of-the-art secure learning algorithms (i.e., bagging and KNN), 2) certified security guarantees of randomized smoothing against adversarial examples without sacrificing its accuracy under no attacks, 3) accuracy of differentially private classifiers, and 4) accuracy and/or efficiency of exact machine unlearning.


Semi-Leak: Membership Inference Attacks Against Semi-supervised Learning

arXiv.org Artificial Intelligence

Semi-supervised learning (SSL) leverages both labeled and unlabeled data to train machine learning (ML) models. State-of-the-art SSL methods can achieve comparable performance to supervised learning by leveraging much fewer labeled data. However, most existing works focus on improving the performance of SSL. In this work, we take a different angle by studying the training data privacy of SSL. Specifically, we propose the first data augmentation-based membership inference attacks against ML models trained by SSL. Given a data sample and the black-box access to a model, the goal of membership inference attack is to determine whether the data sample belongs to the training dataset of the model. Our evaluation shows that the proposed attack can consistently outperform existing membership inference attacks and achieves the best performance against the model trained by SSL. Moreover, we uncover that the reason for membership leakage in SSL is different from the commonly believed one in supervised learning, i.e., overfitting (the gap between training and testing accuracy). We observe that the SSL model is well generalized to the testing data (with almost 0 overfitting) but ''memorizes'' the training data by giving a more confident prediction regardless of its correctness. We also explore early stopping as a countermeasure to prevent membership inference attacks against SSL. The results show that early stopping can mitigate the membership inference attack, but with the cost of model's utility degradation.